Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 322 Accesses

Abstract

Supersymmetry (SUSY) is the currently most favoured theoretical framework describing physics beyond the SM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supersymmetric theories require at least 2 Higgs doublets, one for the up and one for the down type fermions, since only one would lead to electroweak gauge anomalies [7].

References

  1. Golfand YuA, Likhtman EP (1971) Extension of the algebra of Poincare group generators and violation of p invariance. JETP Lett 13:323–326

    ADS  Google Scholar 

  2. Volkov DV, Akulov VP (1973) Is the neutrino a goldstone particle? Phys Lett B 46:109–110. https://doi.org/10.1016/0370-2693(73)90490-5

    Article  ADS  Google Scholar 

  3. Wess J, Zumino B (1974) Supergauge transformations in four dimensions. Nucl Phys B 70:39–50. https://doi.org/10.1016/0550-3213(74)90355-1

    Article  ADS  MathSciNet  Google Scholar 

  4. Wess J, Zumino B (1974) Supergauge invariant extension of quantum electrodynamics. Nucl Phys B 78:1. https://doi.org/10.1016/0550-3213(74)90112-6

    Article  ADS  Google Scholar 

  5. Ferrara S, Zumino B (1974) Supergauge invariant Yang-Mills theories. Nucl Phys B 79:413. https://doi.org/10.1016/0550-3213(74)90559-8

    Article  ADS  Google Scholar 

  6. Salam A, Strathdee JA (1974) Super-symmetry and non-Abelian gauges. Phys Lett B 51:353–355. https://doi.org/10.1016/0370-2693(74)90226-3

    Article  ADS  MathSciNet  Google Scholar 

  7. Martin SP (2010) A supersymmetry primer. Adv Ser Direct (hep-ph) 21:1–153. https://doi.org/10.1142/9789814307505_0001

    Google Scholar 

  8. Fayet P (1976) Supersymmetry and weak, electromagnetic and strong interactions. Phys Lett B 64:159. https://doi.org/10.1016/0370-2693(76)90319-1

    Article  ADS  Google Scholar 

  9. Fayet P (1977) Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys Lett B 69:489. https://doi.org/10.1016/0370-2693(77)90852-8

    Article  ADS  Google Scholar 

  10. Bagger JA (1996) Weak scale supersymmetry: theory and practice. arXiv: hep-ph/9604232 [hep-ph]

  11. Djouadi A et al (1998) The minimal supersymmetric standard model: group summary report

    Google Scholar 

  12. Ellis JR et al (1984) Supersymmetric relics from the big bang. Nucl Phys B 238:453–476. https://doi.org/10.1016/0550-3213(84)90461-9

    Article  ADS  Google Scholar 

  13. Dimopoulos S, Georgi H (1981) Softly broken supersymmetry and SU(5). Nucl Phys B 193:150. https://doi.org/10.1016/0550-3213(81)90522-8

    Article  ADS  Google Scholar 

  14. Sakai N (1981) Naturalness in supersymmetric guts. Z Phys C 11:153. https://doi.org/10.1007/BF01573998

    Article  ADS  Google Scholar 

  15. Dimopoulos S, Raby S, Wilczek F (1981) Supersymmetry and the scale of unification. Phys Rev D 24:1681–1683. https://doi.org/10.1103/PhysRevD.24.1681

    Article  ADS  Google Scholar 

  16. Ibanez LE, Ross GG (1981) Low-energy predictions in supersymmetric grand unified theories. Phys Lett B 105:439. https://doi.org/10.1016/0370-2693(81)91200-4

    Article  ADS  Google Scholar 

  17. Demir DA, Ün, CS (2014) Stop on top: SUSY parameter regions, fine-tuning constraints. Phys Rev D 90:095015. https://doi.org/10.1103/PhysRevD.90.095015

  18. Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390. https://doi.org/10.1016/j.physrep.2004.08.031

    Article  ADS  Google Scholar 

  19. Falk T, Olive KA, Srednicki M (1994) Heavy sneutrinos as dark matter. Phys Lett B 339:248–251. https://doi.org/10.1016/0370-2693(94)90639-4

    Article  ADS  Google Scholar 

  20. Giudice GF, Rattazzi R (1999) Theories with gauge mediated supersymmetry breaking. Phys Rep 322:419–499. https://doi.org/10.1016/S0370-1573(99)00042-3

    Article  ADS  MATH  Google Scholar 

  21. Feng JL, Rajaraman A, Takayama F (2003) Superweakly interacting massive particles. Phys Rev Lett 91:011302. https://doi.org/10.1103/PhysRevLett.91.011302

  22. Dine M, Kusenko A (2003) The origin of the matter—antimatter asymmetry. Rev Mod Phys 76:1. https://doi.org/10.1103/RevModPhys.76.1

    Article  ADS  Google Scholar 

  23. de Boer W (1994) Grand unified theories and supersymmetry in particle physics and cosmology. Prog Part Nucl Phys 33:201–302. https://doi.org/10.1016/0146-6410(94)90045-0

    Article  ADS  Google Scholar 

  24. Ravi K (1996) Solution to the strong CP problem: supersymmetry with parity. Phys Rev Lett 76:3486–3489. https://doi.org/10.1103/PhysRevLett.76.3486

    Article  ADS  Google Scholar 

  25. Gershtein Y et al (2013) Working group report: new particles, forces, and dimensions. In: Proceedings, 2013 community summer study on the future of U.S. particle physics: snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, 29 July–6 August 2013. arXiv: 1311.0299 [hep-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Maximilian Köhler .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Köhler, N.M. (2019). Supersymmetry. In: Searches for the Supersymmetric Partner of the Top Quark, Dark Matter and Dark Energy at the ATLAS Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-25988-4_4

Download citation

Publish with us

Policies and ethics