Skip to main content

Recent Advances in Silylene Chemistry: Small Molecule Activation En-Route Towards Metal-Free Catalysis

  • Chapter
  • First Online:
Functional Molecular Silicon Compounds II

Part of the book series: Structure and Bonding ((STRUCTURE,volume 156))

Abstract

Previously only known as fleeting, transient laboratory curiosities in the 1960s, silylenes (species of the general type: SiIIR′R″ where R′ and R″ are any σ or π-bonded substituents, homo or heteroleptic) are now one of the most rigorously investigated classes of compounds in contemporary chemistry. The breakthroughs came in 1986 when Jutzi and co-workers isolated Cp* 2Si: (Cp* = η5-C5Me5), the first isolable Si(II) compound, and later in 1994 with the discovery of the first N-heterocyclic silylene by West and Denk, heralding the beginning of a bourgeoning era in low-valent silicon chemistry. Since these and other key discoveries, massive advances have been made in understanding and elucidating the nature of these reactive compounds, and their ability, for example, to activate small molecules, or behave as ligands in transition metal complexes which can perform a variety of catalytic or stoichiometric transformations. In this chapter, recent advances in silylene chemistry will be presented, with a particular focus on developments in the last 10 years approximately. A key emphasis will rest on the reactivity of isolable silylenes, including their coordination towards metals, with respect to small molecule bond activation, and potential catalytic transformations. Although metal-coordinated silylene complexes have been shown to be catalytically useful in a variety of transformations, metal-free catalysis with silylenes is still a target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Compounds featuring silicon atoms in the oxidation state + II that are strictly two coordinate qualify as silylenes in the formal sense. Compounds bearing silicon atoms in the oxidation state + II with π-donating ligands are perhaps better described as monomeric silicon(II) compounds. Nevertheless, given the influence such compounds have had on the development of silylene chemistry in recent years, for our purposes, we relax this definition and include compounds bearing π-coordinated substituents on silicon(II) and treat them as “silylenes.”

Abbreviations

Ar:

Aryl

Bu:

Butyl

cod:

Cyclooctadiene

concd:

Concentrated

cot:

Cyclooctatetraene

Cp:

Cyclopentadienyld

Dipp:

2,6-Bis-isopropylphenyl

DMAP:

4-(Dimethylamino)pyridine

DMB:

3,4-Dimethoxybenzyl

DME:

1,2-dimethoxyethane

DMF:

Dimethylformamide

DMPU:

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone

DMSO:

Dimethyl sulfoxide

EDTA:

Ethylenediaminetetraacetic acid

equiv:

Equivalent(s)

Et:

Ethyl

h:

Hour(s)

i-Pr:

Isopropyl

KHMDS:

Potassium hexamethyldisilazide potassium bis(trimethylsilyl)amide

LDA:

Lithium diisopropylamide

LHMDS:

Lithium hexamethyldisilazide lithium bis(trimethylsilyl)amide

LTMP:

Lithium 2,2,6,6-tetramethylpiperidide

Me:

Methyl

Mes:

Mesityl 2,4,6-trimethylphenyl (not methanesulfonyl)

min:

Minute(s)

mol:

Mole(s)

Ph:

Phenyl

Pr:

Propyl

rt:

Room temperature

s:

Second(s)

t-Bu:

tert-butyl

THF:

Tetrahydrofuran

TMEDA:

N,N,N',N'-tetramethyl- 1,2-ethylenediamine

TMS:

Trimethylsilyl

Tol:

4-Methylphenyl

Trip:

2,4,6-Triisopropylphenyl

References

  1. Skell PS, Goldstein EJ (1964) Silacyclopropanes. J Am Chem Soc 86:1442

    Google Scholar 

  2. Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994) Synthesis and structure of a stable silylene. J Am Chem Soc 116:2691

    CAS  Google Scholar 

  3. Driess M, Yao S, Brym M, van Wüllen C, Lentz D (2006) A new type of N-heterocyclic silylene with ambivalent reactivity. J Am Chem Soc 128:9628

    CAS  Google Scholar 

  4. So CW, Roesky HW, Magull J, Oswald RB (2006) Synthesis and characterization of [PhC(Nt-Bu)2]SiCl: a stable monomeric chlorosilylene. Angewandte Chemie 118:4052

    Google Scholar 

  5. So CW, Roesky HW, Magull J, Oswald RB (2006) Synthesis and characterization of [PhC(Nt-Bu)2]SiCl: a stable monomeric chlorosilylene. Angew Chem Int Ed 45:3948

    CAS  Google Scholar 

  6. Sen SS, Roesky HW, Stern D, Henn J, Stalke D (2010) High yield access to silylene RSiCl (R = PhC(Nt-Bu)2) and its reactivity toward alkyne: synthesis of stable disilacyclobutene. J Am Chem Soc 132:1123

    CAS  Google Scholar 

  7. Wang W, Inoue S, Irran E, Driess M (2012) Synthesis and unexpected coordination of a silicon(II)-based SiCSi pincerlike arene to palladium. Angewandte Chemie 124:3751; Angewandte Chemie International Edition 51:3691

    Google Scholar 

  8. Wang W, Inoue S, Yao S, Driess M (2012) An isolable bis-silylene oxide (“Disilylenoxane”) and its metal coordination. J Am Chem Soc 132:15890

    Google Scholar 

  9. Wang W, Inoue S, Enthaler S, Driess M (2012) Bis(silylenyl)- and bis(germylenyl)-substituted ferrocenes: synthesis, structure, and catalytic applications of bidentate silicon(II)–cobalt complexes. Angew Chem Int Ed 51:6167

    CAS  Google Scholar 

  10. Kong L, Zhang J, Song H, Cui C (2009) N-aryl substituted heterocyclic silylenes. Dalton Trans 28:5444

    Google Scholar 

  11. Zark P, Schäfer A, Mitra A, Haase D, Saak W, West R, Müller T (2010) Synthesis and reactivity of N-aryl substituted N-heterocyclic silylenes. J Organomet Chem 695:398

    CAS  Google Scholar 

  12. Sen S, Jana A, Roesky HW, Schulzke C (2009) A remarkable base-stabilized bis(silylene) with a silicon(I)–silicon(I) bond. Angew Chem Int Ed 48:8536–8538

    CAS  Google Scholar 

  13. Gau D, Rodriguez R, Kato T, Affon-Merceron CA, Cossίo FP, Baceiredo A (2011) A synthesis of a stable disilyne bisphosphine adduct and its non-metal-mediated CO2 reduction to CO. Angew Chem Int Ed 50:1092

    CAS  Google Scholar 

  14. Junold K, Baus JA, Burschka C, Tacke R (2012) Bis[N, N′-diisopropylbenzamidinato(−)]silicon(II): A Silicon(II) compound with both a bidentate and a monodentate amidinato ligand. Angewandte Chemie 124:7126

    Google Scholar 

  15. Ding Y, Roesky HW, Noltemeyer M, Schmidt HG, Power PP (2001) Synthesis and structures of monomeric divalent germanium and tin compounds containing a bulky diketiminato ligand. Organometallics 20:1190

    CAS  Google Scholar 

  16. Driess M, Yao S, Brym M, van Wuellen C (2006) Low-valent silicon cations with two-coordinate silicon and aromatic character. Angew Chem Int Ed 45:6730

    CAS  Google Scholar 

  17. Wang RH, Su MD (2008) Theoretical investigations of the reactivities of cationic six-membered carbene analogues of group 14 elements. J Phys Chem A 112:7689

    CAS  Google Scholar 

  18. Jana A, Schulzke C, Roesky HW (2009) Oxidative addition of ammonia at a silicon(II) center and an unprecedented hydrogenation reaction of compounds with low-valent group 14 elements using ammonia borane. J Am Chem Soc 131:4600

    CAS  Google Scholar 

  19. Jana A, Roesky HW, Schulzke C, Samuel PP (2009) Insertion reaction of a silylene into a N − H bond of hydrazine and a [1 + 4] cycloaddition with diphenyl hydrazone. Organometallics 28:6574

    CAS  Google Scholar 

  20. Präsang C, Stoelzel M, Inoue S, Meltzer A, Driess M (2010) Metallfreie aktivierung von EH3 (E = P, As) durch ein ylid-artiges silylen und bildung eines donorstabilisierten arsasilens mit einer HSi = AsH-untereinheit. Angewandte Chemie 122:10199

    Google Scholar 

  21. Präsang C, Stoelzel M, Inoue S, Meltzer A, Driess M (2010) Metal-free activation of EH3 (E = P, As) by an ylide-like silylene and formation of a donor-stabilized arsasilene with a HSi–AsH subunit. Angew Chem Int Ed 49:10002

    Google Scholar 

  22. Yao S, van Wüellen C, Sun XY, Driess M (2008) Dichotome reaktivität eines stabilen silylens gegenüber terminalen alkinen: C–H-insertion oder autokatalytische bildung von silacycloprop-3-en. Angewandte Chemie 120:3294

    Google Scholar 

  23. Yao S, van Wüellen C, Sun XY, Driess M (2008) Dichotomic reactivity of a stable silylene toward terminal alkynes: facile C–H bond insertion versus autocatalytic formation of silacycloprop-3-ene. Angew Chem Int Ed 47:3250

    CAS  Google Scholar 

  24. Xiong Y, Yao S, Brym M, Driess M (2007) Consecutive insertion of a silylene into the P4 tetrahedron: facile access to strained SiP4 and Si2P4 cage compounds. Angew Chem Int Ed 46:4511

    CAS  Google Scholar 

  25. Jana A, Samuel PP, Tavčar G, Roesky HW, Schulzke C (2010) Selective aromatic C − F and C − H bond activation with silylenes of different coordinate silicon. J Am Chem Soc 132:10164

    CAS  Google Scholar 

  26. Xiong Y, Yao S, Driess M (2009) Reactivity of a zwitterionic stable silylene toward halosilanes and haloalkanes. Organometallics 28:1927

    CAS  Google Scholar 

  27. Xiong Y, Yao S, Driess M (2010) Unusual [3 + 1] cycloaddition of a stable silylene with a 2,3-diazabuta-1,3-diene versus [4 + 1] cycloaddition toward a buta-1,3-diene. Organometallics 29:987–990

    CAS  Google Scholar 

  28. Xiong Y, Yao S, Driess M (2009) Versatile reactivity of a zwitterionic isolable silylene toward ketones: silicon-mediated, regio- and stereoselective C–H activation. Chemistry 15:5545

    CAS  Google Scholar 

  29. Xiong Y, Yao S, Driess M (2009) An isolable NHC-supported silanone. J Am Chem Soc 131:7562–7563

    CAS  Google Scholar 

  30. Xiong Y, Yao S, Driess M (2010) Synthesis and rearrangement of stable NHC → silylene adducts and their unique reactivity towards cyclohexylisocyanide. Chemistry 5:322

    CAS  Google Scholar 

  31. Yao S, Xiong Y, Driess M (2010) N-heterocyclic carbene (NHC)-stabilized silanechalcogenones: NHC→Si(R2)E (E = O, S, Se, Te). Chemistry 16:1281

    CAS  Google Scholar 

  32. Ghadwal RS, Sen SS, Roesky HW, Granitzka M, Kratzert D, Merkel S, Stalke D (2010) Convenient access to monosilicon epoxides with pentacoordinate silicon. Angew Chem Int Ed 49:3952

    CAS  Google Scholar 

  33. Sen SS, Khan S, Nagendran S, Roesky HW (2012) Interconnected bis-silylenes: a new dimension in organosilicon chemistry. Acc Chem Res 45:578

    CAS  Google Scholar 

  34. Sen SS, Roesky HW, Meindl K, Stern D, Henn J, Stückl AC, Stalke D (2010) Synthesis, structure, and theoretical investigation of amidinatosupported 1,4-disilabenzene. Chem Commun 46:5873

    CAS  Google Scholar 

  35. Sen SS, Tavcar G, Roesky HW, Kratzert D, Hey J, Stalke D (2010) Synthesis of a stable four-membered Si2O2 ring and a dimer with two four-membered Si2O2 rings bridged by two oxygen atoms, with five-coordinate silicon atoms in both ring systems. Organometallics 29:2343

    CAS  Google Scholar 

  36. Lickiss PD (1992) Transition metal complexes of silylenes, silenes, disilenes and related species. Chem Soc Rev 21:271

    CAS  Google Scholar 

  37. Waterman R, Hayes PG, Tilley TD (2007) Synthetic development and chemical reactivity of transition-metal silylene complexes. Acc Chem Res 40:712

    CAS  Google Scholar 

  38. Blom B, Stoelzel M, Driess M (2013) New vistas in N-heterocyclic silylene (NHSi) transition-metal coordination chemistry: syntheses, structures and reactivity towards activation of small molecules. Chemistry 19:1

    Google Scholar 

  39. Blom B, Stoelzel M, Driess M (2013) New vistas in N-heterocyclic silylene (NHSi) transition-metal coordination chemistry: syntheses, structures and reactivity towards activation of small molecules. Chemistry 19:40

    CAS  Google Scholar 

  40. Meltzer A, Präsang C, Milsmann C, Driess M (2009) Bemerkenswerte stabilisierung von Ni0(η6-Aren)-komplexen durch einen ylid-artigen silylenliganden. Angewandte Chemie 121:3216

    Google Scholar 

  41. Meltzer A, Präsang C, Milsmann C, Driess M (2009) The striking stabilization of Ni0(η6-Arene) complexes by an ylide-like silylene ligand. Angew Chem Int Ed 48:3170

    CAS  Google Scholar 

  42. Meltzer A, Präsang C, Driess M (2009) Diketiminate silicon(II) and related NHSi ligands generated in the coordination sphere of nickel(0). J Am Chem Soc 131:7232

    CAS  Google Scholar 

  43. Meltzer A, Inoue S, Präsang C, Driess M (2010) Steering S − H and N − H bond activation by a stable N-heterocyclic silylene: different addition of H2S, NH3, and organoamines on a silicon(II) ligand versus its Si(II) → Ni(CO)3 complex. J Am Chem Soc 132:3038

    CAS  Google Scholar 

  44. Stoelzel M, Präsang C, Inoue S, Enthaler S, Driess M (2012) Hydrosilylierung von alkinen mit einem Ni(CO)3-stabilisierten silicium(II)-hydrid. Angewandte Chemie 124:411

    Google Scholar 

  45. Stoelzel M, Präsang C, Inoue S, Enthaler S, Driess M (2012) Hydrosilylation of alkynes by Ni(CO)3-stabilized silicon(II) hydrid. Angew Chem Int Ed 51:399

    CAS  Google Scholar 

  46. Fürstner A, Krause H, Lehmann CW (2001) Preparation, structure and catalytic properties of a binuclear Pd(0) complex with bridging silylene ligands. Chem Commun 2001:2372

    Google Scholar 

  47. Zhang M, Liu X, Shi C, Ren C, Ding Y, Roesky HW (2008) The synthesis of (η3-C3H5)Pd{Si[N(tBu)CH]2}Cl and the catalytic property for Heck reaction. Zeitschrift für anorganische und allgemeine Chemie (Journal of Inorganic and General Chemistry) 634:1755

    CAS  Google Scholar 

  48. Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Forcieren der σ-donorstärke in iridium-pinzettenkomplexen: bis(silylen)- und bis(germylen)-liganden sind stärkere donoren als bis[phosphor(III)]-liganden. Angewandte Chemie 124:11645

    Google Scholar 

  49. Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Pushing the σ-donor strength in iridium pincer complexes: bis(silylene) and bis(germylene) ligands are stronger donors than bis(phosphorus(III)) ligands. Angew Chem Int Ed 51:11478

    Google Scholar 

  50. Filippou AC, Chernov O, Schnakenburg G (2009) SiBr2(Idipp): a stable N-heterocyclic carbene adduct of dibromosilylene. Angewandte Chemie 121:5797

    Google Scholar 

  51. Ghadwal RS, Roesky HW, Merkel S, Henn J, Stalke D (2009) Lewis base stabilized dichlorosilylene. Angewandte Chemie 121:5793

    Google Scholar 

  52. Filippou AC, Chernov O, Blom B, Stumpf KW, Schnakenburg G (2010) Stable N-heterocyclic carbene adducts of arylchlorosilylenes and their germanium homologues. Chemistry 16:2866

    CAS  Google Scholar 

  53. Simons RS, Haubrich ST, Mork BV, Niemeyer M, Power PP (1998)) The syntheses and characterization of the bulky terphenyl silanes and chlorosilanes 2,6-Mes2C6H3SiCl3, 2,6-Trip2C6H3SiCl3, 2,6-Mes2C6H3SiHCl2, 2,6-Trip2C6H3SiHCl2, 2,6-Mes2C6H3SiH3, 2,6-Trip2C6H3SiH3 and 2,6-Mes2C6H3SiCl2SiCl3. Main Group Chem 2:275

    CAS  Google Scholar 

  54. Weidemann N, Schnakenburg G, Filippou AC (2009)) Neuartige silane mit sterisch anspruchsvollen aryl-substituenten. Zeitschrift für anorganische und allgemeine Chemie (Journal of Inorganic and General Chemistry) 635:253

    CAS  Google Scholar 

  55. Mork BV, Tilley TD (2003) Multiple bonding between silicon and molybdenum: a transition-metal complex with considerable silylyne character. Angewandte Chemie 115:371

    Google Scholar 

  56. Filippou AC, Portius P, Philippopoulos AI, Rohde H (2003) Dreifachbindung zu zinn: synthese und charakterisierung des stannylidinkomplexes trans-[Cl(PMe3)4W≡Sn–C6H3-2, 6-Mes2]. Angewandte Chemie 115:461

    Google Scholar 

  57. Filippou AC, Portius P, Philippopoulos AI, Rohde H (2003) Triple bonding to tin: synthesis and characterization of the stannylyne complex trans-[Cl(PMe3)4W≡Sn–C6H3-2, 6-Mes2]. Angew Chem Int Ed 42:445

    CAS  Google Scholar 

  58. Filippou AC, Philippopoulos AI, Schnakenburg G (2003) Triple bonding to tin: synthesis and characterization of the square-pyramidal stannylyne complex cation [(dppe)2WSn−C6H3-2, 6-Mes2] + (dppe=Ph2PCH2CH2PPh2, Mes=C6H2-2,4,6-Me3). Organometallics 22:3339

    CAS  Google Scholar 

  59. Filippou AC, Rohde H, Schnakenburg G (2004) Triple bond to lead: synthesis and characterization of the plumbylidyne complex trans-[Br(PMe3)4MoPbC6H3-2,6-Trip2]. Angewandte Chemie 116:2293

    Google Scholar 

  60. Filippou AC, Weidemann N, Schnakenburg G, Rohde H, Philippopoulos AI (2004) Tungsten–lead triple bonds: syntheses, structures, and coordination chemistry of the plumbylidyne complexes trans-[X(PMe3)4WPb(2,6-Trip2C6H3)]. Angewandte Chemie 116:6676

    Google Scholar 

  61. Filippou AC, Chernov O, Stumpf KW, Schnakenburg G (2010) Metall-silicium-dreifachbindungen: synthese und charakterisierung des silylidin-komplexes [Cp(CO)2Mo ≡ Si-R]. Angewandte Chemie 122:3368

    Google Scholar 

  62. Filippou AC, Chernov O, Stumpf KW, Schnakenburg G (2010) Metal–silicon triple bonds: the molybdenum silylidyne complex [Cp(CO)2Mo ≡ Si-R]. Angew Chem Int Ed 49:3296

    CAS  Google Scholar 

  63. Blom B (2011) Reactivity of ylenes at late transition metal centres. Doctoral Dissertation. University of Bonn (Published as a book, Cuvillier Verlag, Göttingen, 2011, ISBN-10: 3869559071)

    Google Scholar 

  64. Filippou AC, Chernov O, Schnakenburg G (2011) Chromium Silicon multiple bonds: the chemistry of terminal N-heterocyclic-carbene-stabilized halosilylidyne ligands. Chemistry 17:13574

    CAS  Google Scholar 

  65. Gao Y, Zhang J, Hu H, Cui C (2010) Base-stabilized 1-silacyclopenta-2,4-dienylidenes. Organometallics 29:3063

    CAS  Google Scholar 

  66. Kira M, Ishida S, Iwamoto T, Kabuto C (1999) The first isolable dialkylsilylene. J Am Chem Soc 121:9722

    CAS  Google Scholar 

  67. Asay M, Inoue S, Driess M (2011) Aromatic ylide-stabilized carbocyclic silylene. Angew Chem Int Ed 50:9589

    CAS  Google Scholar 

  68. Abe T, Tanaka R, Ishida S, Kira M, Iwamoto T (2012) New isolable dialkylsilylene and its isolable dimer that equilibrate in solution. J Am Chem Soc 134:20029

    CAS  Google Scholar 

  69. See reference 20 in 67

    Google Scholar 

  70. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317

    CAS  Google Scholar 

  71. Chen Z, Wannere CS, Corminboeuf C, Puchta R, PvR S (2005) Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem Rev 105:3842

    CAS  Google Scholar 

  72. Kira M, Iwamoto T, Ishida S (2007) A helmeted dialkylsilylene. Bull Chem Soc Jpn 80:258

    CAS  Google Scholar 

  73. Iwamoto T, Sato K, Ishida S, Kabuto C, Kira M (2006) Synthesis, properties, and reactions of a series of stable dialkyl-substituted silicon−chalcogen doubly bonded compounds. J Am Chem Soc 128:16914

    CAS  Google Scholar 

  74. Ishida S, Iwamoto T, Kira M (2011) Addition of a stable dialkylsilylene to carbon–carbon unsaturated bonds. Heteroatom Chem 22:432

    CAS  Google Scholar 

  75. Abe T, Iwamoto T, Kabuto C, Kira M (2006) Synthesis, structure, and bonding of stable dialkylsilaketenimines. J Am Chem Soc 128:4228

    CAS  Google Scholar 

  76. Takeda N, Kajiwara T, Suzuki H, Okazaki R, Tokitoh N (2003) Synthesis and properties of the first stable silylene–isocyanide complexes. Chemistry 9:3530

    CAS  Google Scholar 

  77. Ishida S, Iwamoto T, Kira M (2010) Reactions of an isolable dialkylsilylene with ketones. Organometallics 29:5526

    CAS  Google Scholar 

  78. Watanabe C, Iwamoto T, Kabuto C, Kira M (2008) Fourteen-electron bis(dialkylsilylene)palladium and twelve-electron bis(dialkylsilyl)palladium complexes. Angew Chem Int Ed 47:5386

    CAS  Google Scholar 

  79. Watanabe C, Inagawa Y, Iwamoto T, Kira M (2010) Synthesis and structures of (dialkylsilylene)bis(phosphine)-nickel, palladium, and platinum complexes and (η6-arene)(dialkylsilylene)nickel complexes. Dalton Trans 39:9414

    CAS  Google Scholar 

  80. Sekiguchi A, Tanaka T, Ichinohe M, Akiyama K, Tero-Kubota S (2003) Bis(tri-tert-butylsilyl)silylene: triplet ground state silylene. J Am Chem Soc 125:4962

    CAS  Google Scholar 

  81. Tsutsui S, Sakamoto K, Kira M (1998) Bis(diisopropylamino)silylene and its dimer. J Am Chem Soc 120:9955

    CAS  Google Scholar 

  82. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214:1343

    CAS  Google Scholar 

  83. Ando W, Fujita M, Yoshida H, Sekiguchi A (1988) Stereochemistry of the addition of diarylsilylenes to cis- and trans-2-butenes. J Am Chem Soc 110:3310

    CAS  Google Scholar 

  84. Driess M (2012) Main group chemistry: breaking the limits with silylenes. Nat Chem 4:525

    CAS  Google Scholar 

  85. Rekken BD, Brown TM, Fettinger JC, Tuononen HM, Power PP (2012) Isolation of a stable, acyclic, two-coordinate silylene. J Am Chem Soc 134:6504

    CAS  Google Scholar 

  86. Protchenko AV, Birjkumar K, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2012) A stable two-coordinate acyclic silylene. J Am Chem Soc 134:6500

    CAS  Google Scholar 

  87. Green SP, Jones C, Stasch A (2007) Stable magnesium(I) compounds with Mg–Mg bonds. Science 318:1754

    CAS  Google Scholar 

  88. Protchenko AV, Schwarz AD, Blake MP, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2013) A generic one-pot route to acyclic two-coordinate silylenes from silicon(IV) precursors: synthesis and structural characterization of a silylsilylene. Angew Chem Int Ed 52:568

    CAS  Google Scholar 

  89. Holthausen MC, Koch W, Apeloig Y (1999) Theory predicts triplet ground-state organic silylenes. J Am Chem Soc 121:2623

    CAS  Google Scholar 

  90. Jutzi P, Kanne D, Krüger C (1986) Decamethylsilicocen – synthese und struktur. Angewandte Chemie 98:163

    CAS  Google Scholar 

  91. Jutzi P, Kanne D, Krüger C (1986) Decamethylsilicocene – synthesis and structure. Angew Chem Int Ed 25:164

    Google Scholar 

  92. Kühler T, Jutzi P (2003) Decamethylsilicocene: synthesis, structure, bonding and chemistry. Adv Organometallic Chem 49:1

    Google Scholar 

  93. Jutzi P, Mix A, Rummel B, Schoeller WW, Neumann B, Stammler HG (2004) The (Me5C5)Si+ cation: a stable derivative of HSi+. Science 305:849

    CAS  Google Scholar 

  94. Douglas AE, Lutz BL (1970) Spectroscopic identification of the SiH + molecule: The A1Π–X1Σ + system. Can J Phys 48:247

    CAS  Google Scholar 

  95. Singh PD, Vanlandingham FG (1978) Line positions and oscillator strengths of rotation-vibration bands of possible interstellar SiH and SiH+. Astronomy Astrophys 66:87

    CAS  Google Scholar 

  96. Xiong Y, Yao S, Inoue S, Irran E, Driess M (2012) The elusive silyliumylidene [ClSi:]+ and silathionium [ClSiS]+ cations stabilized by bis(Iminophosphorane) chelate ligand. Angew Chem Int Ed 51:10074

    CAS  Google Scholar 

  97. Leszczyńska K, Mix A, Berger RJF, Rummel B, Neumann B, Stammler HG, Jutzi P (2011) The pentamethylcyclopentadienylsilicon(II) cation as a catalyst for the specific degradation of oligo(ethyleneglycol) diethers. Angew Chem Int Ed 50:6843

    Google Scholar 

  98. Schiemenz B, Power PP (1996) Synthesis of sterically encumbered terphenyls and characterization of their metal derivatives Et2OLiC6H3-2,6-Trip2 and Me2SCuC6H3-2, 6-Trip2(Trip = 2,4,6-i-Pr3C6H2 ). Organometallics 15:958

    CAS  Google Scholar 

  99. Jutzi P, Leszczyńska K, Neumann B, Schoeller WW, Stammler HG (2009) [2,6-(Trip)2H3C6](Cp*)Si, eine stabile monomere arylsilicium(II)- verbindung. Angewandte Chemie 121:2634

    Google Scholar 

  100. Jutzi P, Leszczyńska K, Neumann B, Schoeller WW, Stammler HG (2009) [2,6-(Trip)2H3C6](Cp*)Si: a stable monomeric arylsilicon(II) compound. Angew Chem Int Ed 48:2596

    CAS  Google Scholar 

  101. Tamm M, Petrovic D, Randoll S, Beer S, Bannenberg T, Jones PG, Grunenberg J (2007) Structural and theoretical investigation of 2-iminoimidazolines – carbene analogues of iminophosphoranes. Org Biomol Chem 5:523

    CAS  Google Scholar 

  102. Beer S, Brandhorst K, Hrib CG, Wu X, Haberlag B, Grunenberg J, Jones PG, Tamm M (2009) Experimental and theoretical investigations of catalytic alkyne cross-metathesis with imidazolin-2-iminato tungsten alkylidyne complexes. Organometallics 28:1534

    CAS  Google Scholar 

  103. Inoue S, Leszczyńska K (2012) An acyclic imino-substituted silylene: synthesis, isolation, and its facile conversion into a zwitterionic silaimine. Angew Chem Int Ed 51:8589

    CAS  Google Scholar 

  104. Jutzi P, Leszczyńska K, Mix A, Neumann B, Rummel B, Schoeller W, Stammler HG (2010) Synthesis and characterization of the ferrio-substituted silicon(II) compound Me5C5(CO)2FeSiC5Me5. Organometallics 29:4759

    CAS  Google Scholar 

  105. Leszczyńska K, Abersfelder K, Mix A, Neumann B, Stammler HG, Cowley MJ, Jutzi P, Scheschkewitz D (2012) Reversible base coordination to a disilene. Angew Chem Int Ed 51:6785

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Cluster of Excellence “Unicat” (sponsored by the Deutsche Forschungsgemeinschaft (DFG) and administered by the TU Berlin) and the Normalverfahren of the DFG (DR 17–2) for financial support. We also acknowledge Dr S. Yao and Prof Dr S. Inoue for useful material in the preparation of this chapter. We also thank L. van Hoepen for proofreading the final draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Driess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blom, B., Driess, M. (2013). Recent Advances in Silylene Chemistry: Small Molecule Activation En-Route Towards Metal-Free Catalysis. In: Scheschkewitz, D. (eds) Functional Molecular Silicon Compounds II. Structure and Bonding, vol 156. Springer, Cham. https://doi.org/10.1007/430_2013_95

Download citation

Publish with us

Policies and ethics