Skip to main content
Log in

Moisture characteristics of warm mix asphalt containing reclaimed asphalt pavement (RAP) or steel slag

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Issues like limitation of natural resources of aggregates, global warming, need for eco-friendly, cost-effective, and high performance and durable asphalt mixture, have made the Reclaimed Asphalt Pavements Warm Mix Asphalt (RAP-WMA) and Steel Slag Warm Mix Asphalt (SS-WMA) interesting substitutions for conventional Hot Mix Asphalt mixtures. Furthermore, presence of moisture initiates and accelerates the deterioration of both of these mixtures. In this way, the response of the RAP-WMA to the moisture damage was compared with the SS-WMA using experimental tests including Indirect Tensile fatigue failure, Resilient Modulus, Indirect Tensile Strength, Semi-circular Bending, and Dynamic Creep tests. The obtained results show that although the RAP-WMA and SS-WMA mixtures contain hydrophilic and moisture sensitive aggregates and aged binder, they had an appropriate performance against the effect of moisture. Also, the SS-WMA mixtures showed better performance against moisture than the RAP-WMA mixtures, and therefore, they can be recommended as a substitution for RAP-WMA in regions where moisture damage is prevailing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nejad FM, Azarhoosh AR, Hamedi GH (2013) The effects of using recycled concrete on fatigue behavior of hot mix asphalt. J Civ Eng Manag 19:S61–S68

    Google Scholar 

  2. Hesami S, Ameri M, Goli H, Akbari A (2015) Laboratory investigation of moisture susceptibility of warm-mix asphalt mixtures containing steel slag aggregates. Int J Pavement Eng 16:745–759

    Article  Google Scholar 

  3. Stimilli A, Virgili A, Canestrari F, Bahia HU (2017) Estimation of low-temperature performance of recycled asphalt mixtures through relaxation modulus analysis. Cold Reg Sci Technol 133:36–45

    Article  Google Scholar 

  4. Raposeiras AC, Vargas-Cerón A, Movilla-Quesada D, Castro-Fresno D (2016) Effect of copper slag addition on mechanical behavior of asphalt mixes containing reclaimed asphalt pavement. Constr Build Mater 119:268–276

    Article  Google Scholar 

  5. Gibreil HAA, Feng CP (2017) Effects of high-density polyethylene and crumb rubber powder as modifiers on properties of hot mix asphalt. Constr Build Mater 142:101–108

    Article  Google Scholar 

  6. Chiu C-T, Hsu T-H, Yang W-F (2008) Life cycle assessment on using recycled materials for rehabilitating asphalt pavements. Resour Conserv Recycl 52:545–556

    Article  Google Scholar 

  7. Ameri M, Hesami S, Goli H (2013) Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Constr Build Mater 49:611–617

    Article  Google Scholar 

  8. Dinis-Almeida M, Afonso ML (2015) Warm mix recycled asphalt–a sustainable solution. J Clean Prod 107:310–316

    Article  Google Scholar 

  9. Goli H, Hesami S, Ameri M (2017) Laboratory evaluation of damage behavior of warm mix asphalt containing steel slag aggregates. J Mater Civ Eng 29:4017009

    Article  Google Scholar 

  10. Chen Z, Wu S, Wen J, Zhao M, Yi M, Wan J (2015) Utilization of gneiss coarse aggregate and steel slag fine aggregate in asphalt mixture. Constr Build Mater 93:911–918

    Article  Google Scholar 

  11. Stimilli A, Virgili A, Giuliani F, Canestrari F (2017) Mix design validation through performance-related analysis of in plant asphalt mixtures containing high RAP content. Int J Pavement Res Technol 10:23–37

    Article  Google Scholar 

  12. Pasetto M, Baldo N (2010) Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. J Hazard Mater 181:938–948

    Article  Google Scholar 

  13. Copeland A, D’Angelo J, Dongre R, Belagutti S, Sholar G (2010) Field evaluation of high reclaimed asphalt pavement–warm-mix asphalt project in Florida: case study. Transp Res Rec 2179:93–101

    Article  Google Scholar 

  14. Rogers W (2011) Influence of warm mix additives upon high RAP asphalt mixes, Clemson University

  15. Timm DH, Willis JR, Kvasnak A (2011) Full-scale structural evaluation of fatigue characteristics in high reclaimed asphalt pavement and warm-mix asphalt. Transp Res Rec 2208:56–63

    Article  Google Scholar 

  16. Aurangzeb Q, Al-Qadi IL, Carpenter S, Pine B, Trepanier J (2011) Mix design and laboratory performance of asphalt mixtures with high RAP content, In: RAP-ETG Meet. Irvine, CA

  17. Behnia B, Dave EV, Ahmed S, Buttlar WG, Reis H (2011) Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions. Transp Res Rec 2208:64–71

    Article  Google Scholar 

  18. Rubio MC, Martínez G, Baena L, Moreno F (2012) Warm mix asphalt: an overview. J Clean Prod 24:76–84

    Article  Google Scholar 

  19. Capitão SD, Picado-Santos LG, Martinho F (2012) Pavement engineering materials: Review on the use of warm-mix asphalt. Constr Build Mater 36:1016–1024

    Article  Google Scholar 

  20. Kheradmand B, Muniandy R, Hua LT, Yunus RB, Solouki A (2014) An overview of the emerging warm mix asphalt technology. Int J Pavement Eng 15:79–94

    Article  Google Scholar 

  21. Sorlini S, Sanzeni A, Rondi L (2012) Reuse of steel slag in bituminous paving mixtures. J Hazard Mater 209:84–91

    Article  Google Scholar 

  22. Ferreira VJ, Vilaplana AS, García-Armingol T, Aranda-Usón A, Lausín-González C, López-Sabirón AM, Ferreira G (2016) Evaluation of the steel slag incorporation as coarse aggregate for road construction: technical requirements and environmental impact assessment. J Clean Prod 130:175–186

    Article  Google Scholar 

  23. Mallick RB, Bergendahl J (2009) A laboratory study on CO2 emission from asphalt binder and its reduction with the use of warm mix asphalt. Int J Sustain Eng 2:275–283

    Article  Google Scholar 

  24. Jamshidi A, Hamzah MO, You Z (2013) Performance of warm mix asphalt containing Sasobit®: State-of-the-art. Constr Build Mater 38:530–553

    Article  Google Scholar 

  25. Chen J-S, Wei S-H (2016) Engineering properties and performance of asphalt mixtures incorporating steel slag. Constr Build Mater 128:148–153

    Article  Google Scholar 

  26. Kazmee H, Tutumluer E, Beshears S (2017) Using accelerated pavement testing to evaluate reclaimed asphalt pavement materials for pavement unbound granular layers. J Mater Civ Eng 29:4016205

    Article  Google Scholar 

  27. Kusam A, Malladi H, Tayebali AA, Khosla NP (2017) Laboratory evaluation of workability and moisture susceptibility of warm-mix asphalt mixtures containing recycled asphalt pavements. J Mater Civ Eng 29:4016276

    Article  Google Scholar 

  28. Saleh M (2016) others, Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. Constr Build Mater 114:580–587

    Article  Google Scholar 

  29. Chaurand P, Rose J, Briois V, Olivi L, Hazemann J-L, Proux O, Domas J, Bottero J-Y (2007) Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. J Hazard Mater 139:537–542

    Article  Google Scholar 

  30. D’Angelo J, Harm E, Bartoszek J, Baumgardner GL, Corrigan M, Cowsert J, Harman T, Jamshidi M, Jones W, Newcomb D et al (2008) Warm-mix asphalt: European practice. FHWA-PL-08–007

  31. Yildirim IZ, Prezzi M (2009) Use of steel slag in subgrade applications

  32. Ahmedzade P, Sengoz B (2009) Evaluation of steel slag coarse aggregate in hot mix asphalt concrete. J Hazard Mater 165:300–305

    Article  Google Scholar 

  33. Kim YR (2009) Modeling of asphalt concrete, McGraw-Hill Education

  34. Prowell BD, Hurley GC, Crews E (1998) Field performance of warm-mix asphalt at national center for asphalt technology test track. Transp Res Rec 2007:96–102

    Google Scholar 

  35. Xiao F, Amirkhanian S, Putman B (2010) Evaluation of rutting resistance in warm asphalt mixture containing moist aggregate [J], J Transp Res Board

  36. Xiao F, Jordan J, Amirkhanian SN (2009) Laboratory investigation of moisture damage in warm-mix asphalt containing moist aggregate. Transp Res Rec 2126:115–124

    Article  Google Scholar 

  37. Xiao F, Zhao W, Gandhi T, Amirkhanian SN (2012) Laboratory investigation of moisture susceptibility of long-term saturated warm mix asphalt mixtures. Int J Pavement Eng 13:401–414

    Article  Google Scholar 

  38. Wang G, Wang Y, Gao Z (2010) Use of steel slag as a granular material: volume expansion prediction and usability criteria. J Hazard Mater 184:555–560

    Article  Google Scholar 

  39. Morales EM (1993) Structural and functional distress due to slag expansion, In: Proc Third Int Conf Case Hist Geotech Eng St. Louis, MO, USA

  40. Brand AS, Fanijo EO (2020) A review of the influence of steel furnace slag type on the properties of cementitious composites. Appl Sci 10:8210

    Article  Google Scholar 

  41. Mallick RB, Gould JS, Bhattacharjee S, Regimand A, James LH, Brown ER (2003) Development of a rational procedure for evaluation of moisture susceptibility of asphalt paving mixes, Transp Res Board, Washington, DC

  42. Solaimanian M, Harvey J, Tahmoressi M, Tandon V (2003) Test methods to predict moisture sensitivity of hot-mix asphalt pavements, In: Transp Res Board Natl Semin San Diego, Calif, pp 77–110

  43. Kringos N, Khedoe R, Scarpas A, de Bondt A (2011) A new asphalt concrete moisture susceptibility test methodology

  44. DeCarlo C, Dave EV, Sias JE, Airey G, Mallick R (2019) Comparative evaluation of moisture susceptibility test methods for routine usage in asphalt mixture design. J Test Eval 48:88–106

    Google Scholar 

  45. Goli H, Latifi M (2020) Evaluation of the effect of moisture on behavior of warm mix asphalt (WMA) mixtures containing recycled asphalt pavement (RAP). Constr Build Mater 247:118526

    Article  Google Scholar 

  46. Sadeghian M, Latifi Namin M, Goli H (2019) Evaluation of the fatigue failure and recovery of SMA mixtures with cellulose fiber and with SBS modifier. Constr Build Mater 226:818–826

    Article  Google Scholar 

  47. Shahri M, Babazadeh A, Namin ML (2021) Effects of irregular loading patterns on fatigue life measured in indirect tensile fatigue test: a traffic-based study. Mater Struct 54:1–16

    Article  Google Scholar 

  48. Hefer AW (2004) Adhesion in bitumen-aggregate systems and quantification of the effects of water on the adhesive bond, Texas A&M University

  49. Jamieson IL, Moulthrop JS, Jones DR (1995) SHRP results on binder-aggregate adhesion and resistance to stripping, Asph. Yearb. 1995

  50. Majidifard H, Tabatabaee N, Buttlar W (2019) Investigating short-term and long-term binder performance of high-RAP mixtures containing waste cooking oil. J Traffic Transp Eng 6:396–406

    Google Scholar 

  51. Yousefi A, Behnood A, Nowruzi A, Haghshenas H (2021) Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Constr Build Mater 268:121200

    Article  Google Scholar 

  52. Yousefi AA, Sobhi S, Aliha MRM, Pirmohammad S, Haghshenas HF (2021) Cracking properties of warm mix asphalts containing reclaimed asphalt pavement and recycling agents under different loading modes. Constr Build Mater 300:124130

    Article  Google Scholar 

  53. Yang G, Wang K, Li JQ, Romero M, Liu W (2022) Laboratory and field performance evaluation of warm mix asphalt incorporating RAP and RAS. KSCE J Civ Eng 26:107–119. https://doi.org/10.1007/s12205-021-2315-8

    Article  Google Scholar 

  54. Zhang Y, Bahia HU (2021) Effects of recycling agents (RAs) on rutting resistance and moisture susceptibility of mixtures with high RAP/RAS content. Constr Build Mater 270:121369. https://doi.org/10.1016/j.conbuildmat.2020.121369

    Article  Google Scholar 

  55. Rahman MA, Ghabchi R, Zaman M, Ali SA (2021) Rutting and moisture-induced damage potential of foamed warm mix asphalt (WMA) containing RAP. Innov Infrastruct Solut 6:1–11. https://doi.org/10.1007/s41062-021-00528-7

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Latifi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goli, H., Latifi, M. & Sadeghian, M. Moisture characteristics of warm mix asphalt containing reclaimed asphalt pavement (RAP) or steel slag. Mater Struct 55, 53 (2022). https://doi.org/10.1617/s11527-022-01893-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01893-0

Keywords

Navigation