Skip to main content

Advertisement

Log in

Design strategies and recent advances in utilisation of solar energy for pasteurisation

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Use of sustainable sources of energy is on the rise due to depletable nature of the conventional sources of energy generation. Renewable sources of energy such as wind, biomass, solar energy etc. are some of the most extensively available non-conventional source of energy. Pasteurisation refers to the phenomenon of mild thermal treatment to liquids or foods to eliminate the most resistant pathogenic bacteria. As such, the primary aim of this paper is to discuss about solar pasteurisation as an alternative to conventional pasteurisation and examine various research works on solar pasteurisation to achieve a solution for sustainable development. Various coatings’ materials and components used in the manufacturing of solar pasteurisation setup have been discussed with emphasis on increasing efficiency. Results reveal that use of PV/T support and certain design modifications leads to the reduction in the total pasteurisation time of raw milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. A. Shahsavari, M. Akbari, Potential of solar energy in developing countries for reducing energy-related emissions. Renew. Sustain. Energy Rev. 90, 275–291 (2018)

    Article  CAS  Google Scholar 

  2. H.N. Panchal, P.K. Shah, Performance analysis of double basin solar still with evacuated tubes. Appl. Solar Energy 49(3), 174–179 (2013)

    Article  Google Scholar 

  3. M.S. Jamel, A. Abd Rahman, A.H. Shamsuddin, Advances in the integration of solar thermal energy with conventional and non-conventional power plants. Renew. Sustain. Energy Rev. 20, 71–81 (2013)

    Article  Google Scholar 

  4. National Advisory Committee on Microbiological Criteria for Foods (NACMCF). (2006). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J. Food Prot 1190–1216

  5. T. Deak, Food Safety Management: Chapter 17 (Thermal Treatment. Elsevier Inc., Chapters, 2013)

    Google Scholar 

  6. S.H. Farjana, N. Huda, M.P. Mahmud, R. Saidur, Solar process heat in industrial systems—a global review. Renew. Sustain. Energy Rev. 82, 2270–2286 (2018)

    Article  Google Scholar 

  7. L.M. Dion, M. Lefsrud, V. Orsat, C. Cimon, Biomass gasification and syngas combustion for greenhouse CO2 enrichment. BioResources 8(2), 1520–1538 (2013)

    Article  Google Scholar 

  8. Birol, F. (2007). World energy outlook 2007: China and India insights. Council on Foreign Relations, Inside CFR Events podcast, MP3 file1, 02–17.

  9. H. Thakkar, A. Sankhala, P.V. Ramana, H. Panchal, A detailed review on solar desalination techniques. Int. J. Ambient Energy 41(9), 1066–1087 (2020)

    Article  CAS  Google Scholar 

  10. H. Panchal, H. Bhargav, Mini-review of different co-generation systems: solar thermal perspective. J. Ambient Energy Int. (2019). https://doi.org/10.1080/01430750.2019.1568912

  11. Y. Li, H.S. Joyner, A.P. Lee, M.A. Drake, Impact of pasteurization method and fat on milk: relationships among rheological, tribological, and astringency behaviors. Int. Dairy J. 78, 28–35 (2018)

    Article  Google Scholar 

  12. K. Thulukkanam, Heat Exchanger Design Handbook (CRC Press, 2013)

    Book  Google Scholar 

  13. H.N. Panchal, P.K. Shah, Enhancement of distillate output of double basin solar still with vacuum tubes. Front. Energy 8(1), 101–109 (2014)

    Article  Google Scholar 

  14. A. Ahmadi, M.A. Ehyaei, A. Doustgani, M.E.H. Assad, A. Hmida, D.H. Jamali et al., Recent residential applications of low-temperature solar collector. J. Clean. Product. 12, 3549 (2020)

    Google Scholar 

  15. O. Ayadi, M. Aprile, M. Motta, Solar cooling systems utilizing concentrating solar collectors: an overview. Energy Proc. 30, 875–883 (2012)

    Article  Google Scholar 

  16. Joardder, M. U. H., Halder, P. K., Rahim, M. A., &Masud, M. H. (2017). Solar pyrolysis: converting waste into asset using solar energy. In Clean Energy for Sustainable Development (pp. 213–235). Academic Press.

  17. NA, H., Potency of solar energy applications in Indonesia. Int. J. Renew. Energy Dev. 1(2), 33–38 (2012)

  18. N. Mehla, A. Yadav, Experimental analysis of thermal performance of evacuated tube solar air collector with phase change material for sunshine and off-sunshine hours. Int. J. Ambient Energy 38(2), 130–145 (2017)

    Article  CAS  Google Scholar 

  19. Z. Liu, H. Li, K. Liu, H. Yu, K. Cheng, Design of high-performance water-in-glass evacuated tube solar water heaters by a high-throughput screening based on machine learning: a combined modeling and experimental study. Sol. Energy 142, 61–67 (2017)

    Article  Google Scholar 

  20. S.A. Kalogirou, Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30(3), 231–295 (2004)

    Article  CAS  Google Scholar 

  21. R.W. Moss, G.S.F. Shire, P. Henshall, P.C. Eames, F. Arya, T. Hyde, Optimal passage size for solar collector microchannel and tube-on-plate absorbers. Sol. Energy 153, 718–731 (2017)

    Article  Google Scholar 

  22. K. Uetani, K. Hatori, Thermal conductivity analysis and applications of nanocellulose materials. Sci. Technol. Adv. Mater. 18(1), 877–892 (2017)

    Article  CAS  Google Scholar 

  23. U.R. Lenel, P.R. Mudd, A review of materials for solar heating systems for domestic hot water. Sol. Energy 32(1), 109–120 (1984)

    Article  CAS  Google Scholar 

  24. A. Faghri, Heat pipes: review, opportunities and challenges. Front. Heat Pipes (FHP) 5(1) (2014)

  25. S. Thappa, A. Chauhan, A. Sawhney, Y. Anand, S. Anand, Thermal selective coatings and its enhancement characteristics for efficient power generation through parabolic trough collector (PTC). Clean Technol. Environ. Policy 22(3), 557–577 (2020)

    Article  CAS  Google Scholar 

  26. Gillet, W.B. (1980). Kippsolarimeter: a review of its operation and calibration.

  27. J. Ahmadzadeh, M. Gascoigne, Efficiency of solar collectors. Energy Convers. 16(1–2), 13–21 (1976)

    Article  Google Scholar 

  28. Y. Cao, Q. Wang, W. Cheng, S. Nojavan, K. Jermsittiparsert, Risk-constrained optimal operation of fuel cell/photovoltaic/battery/grid hybrid energy system using downside risk constraints method. Int. J. Hydrogen Energy 45(27), 14108–14118 (2020)

    Article  CAS  Google Scholar 

  29. L.R. Bivol, V.G. Ghica, E. Vasile, C.I. Covaliu, D. Gheorghe, M.I. Petrescu, Analysis of a painting made on metal support in order to establish paternity. Rom. J. Mater. 50(3), 320–330 (2020)

    Google Scholar 

  30. I. Torres, M.T. Sánchez, D. Pérez-Marín, Integrated soluble solid and nitrate content assessment of spinach plants using portable NIRS sensors along the supply chain. Postharvest. Biol. Technol. 168, 111–273 (2020)

    Article  Google Scholar 

  31. Karoro, A. (2018). Tubular cobalt nanocomposites for selective solar absorber applications (Doctoral dissertation)

  32. M. Biesuz, J. Dong, S. Fu, Y. Liu, H. Zhang, D. Zhu, Thermally-insulated flash sintering. ScriptaMaterialia 162, 99–102 (2019)

    CAS  Google Scholar 

  33. U. Berardi, L. Tronchin, M. Manfren, B. Nastasi, On the effects of variation of thermal conductivity in buildings in the Italian construction sector. Energies 11(4), 872 (2018)

    Article  Google Scholar 

  34. Aouanouka AS, Absib R, Mouheba A, Tounsia Z (2018). Milk heat treatments: temperature effect on fouling. Chem Eng 71:

  35. M. Lucentini, V. Naso, L. Rubini, Innovative milk pasteurizing plant fed by solar energy. J. Dairy Sci. 90, 110–125 (2001)

    Google Scholar 

  36. H. Panchal, R. Patel, S. Chaudhary, D.K. Patel, R. Sathyamurthy, T. Arunkumar, Solar energy utilisation for milk pasteurisation: a comprehensive review. Renew. Sustain. Energy Rev. 92, 1–8 (2018)

    Article  Google Scholar 

  37. K.M. Nielsen, T.S. Pedersen, Solar Panel Based Milk Pasteurization (Aalborg University, Department of Control Engineering, 2001)

    Google Scholar 

  38. J. Franco, L. Saravia, V. Javi, R. Caso, C. Fernandez, Pasteurization of goat milk using a low cost solar concentrator. Sol. Energy 82(11), 1088–1094 (2008)

    Article  CAS  Google Scholar 

  39. M.F. Atia, M.M. Mostafa, M.A. El-Nono, M.F. Abdel-Salam, Milk pasteurization using solar concentrator with tracking device. MISR J. Agric. Eng. 33(3), 915–932 (2016)

    Article  Google Scholar 

  40. B.D. Plourde, A. Gikling, T. Marsch, M.A. Riemenschneider, J.L. Fitzgerald, W.J. Minkowycz, Design and evaluation of a concentrated solar-powered thermal pasteurization system. J. Solar Energy Res. Updates 6, 34–42 (2019)

    Article  Google Scholar 

  41. F.O. Wayua, M.W. Okoth, J. Wangoh, Design and performance assessment of a flat-plate solar milk pasteurizer for arid pastoral areas of Kenya. J. Food Process. Preserv. 37(2), 120–125 (2013)

    Article  Google Scholar 

  42. G.C. da Silva, C. Tiba, G.M.T. Calazans, Solar pasteurizer for the microbiological decontamination of water. Renew Energy 87, 711–719 (2016)

    Article  Google Scholar 

  43. Y. Wang, Y. Jin, Q. Huang, L. Zhu, M. Vivar, L. Qin, Photovoltaic and disinfection performance study of a hybrid photovoltaic-solar water disinfection system. Energy 106, 757–764 (2016)

    Article  CAS  Google Scholar 

  44. B. Sizirici, Modified bios and filter coupled with a solar water pasteurizer: decontamination study. J. Water Process Eng. 23, 277–284 (2018)

    Article  Google Scholar 

  45. P.H. Dobrowsky, M. Carstens, J. De Villiers, T.E. Cloete, W. Khan, Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater. Sci. Total Environ. 536, 206–214 (2015)

    Article  CAS  Google Scholar 

  46. R. Zahira, H. Akif, N. Amin, M. Azam, Z. Haq, Fabrication and performance study of a solar milk pasteurizer. Pak. J. Agric. Sci. 46(2), 162–170 (2009)

    Google Scholar 

  47. J.R. Stabel, On farm batch pasteurization destroys Mycobacteriu, paratuberculosis in waste milk. J Dairy Sci 84, 524–527 (2001)

    Article  CAS  Google Scholar 

  48. Atia, M. F., Mostafa, M. M., Abdel-Salam, M. F., & El-Nono, M. A. (2010). Solar energy utilization for milk pasteurization (Doctoral dissertation).

  49. A. Kulkarni, A. Kapley, R.S. Dhodapkar, P. Nagababu, S. Rayalu, Plasmonics driven engineered pasteurizers for solar water disinfection (SWADIS). J. Hazard. Mater. 369, 474–482 (2019)

    Article  CAS  Google Scholar 

  50. G. Manfrida, K. Petela, F. Rossi, Natural circulation solar thermal system for water disinfection. Energy 141, 1204–1214 (2017)

    Article  Google Scholar 

  51. N. Dainelli, G. Manfrida, K. Petela, F. Rossi, Exergo-economic evaluation of the cost for solar thermal depuration of water. Energies 10(9), 1395 (2017)

    Article  Google Scholar 

  52. M. Lazaar, H. Boughanmi, S. Bouadila, M. Jarraya, Parametric study of plate heat exchanger for eventual use in a solar pasteurization process designed for small milk collection centers in Tunisia. Sustain. Energy Technol. Assess. 45, 101174 (2021)

    Google Scholar 

  53. G.N. Tiwari, M. Meraj, M.E. Khan, R.K. Mishra, V. Garg, Improved Hottel-Whillier-Bliss equation for N-photovoltaic thermal-compound parabolic concentrator (N-PVT-CPC) collector. Sol. Energy 166, 203–212 (2018)

    Article  Google Scholar 

  54. M. Meraj, S.M. Mahmood, M.E. Khan, M. Azhar, G.N. Tiwari, Effect of N-Photovoltaic thermal integrated parabolic concentrator on milk temperature for pasteurization: a simulation study. Renew. Energy 163, 2153–2164 (2021)

    Article  Google Scholar 

  55. S. Akmese, G. Omeroglu, O. Comakli, Photovoltaic thermal (PV/T) system assisted heat pump utilization for milk pasteurization. Sol. Energy 218, 35–47 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Madhuresh Dwivedi or Shafat Ahmad Khan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taj, F., Dar, A., Dwivedi, M. et al. Design strategies and recent advances in utilisation of solar energy for pasteurisation. MRS Energy & Sustainability 9, 49–63 (2022). https://doi.org/10.1557/s43581-021-00017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-021-00017-5

Keywords

Navigation