Skip to main content
Log in

Influence of in-situ phases on the magnetocapacitance response of ex-situ combustion derived BaTiO3–ferrite composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In-situ phases can influence the magnetocapacitance response of a magnetodielectric composite. In this work, BaTiO3-ferrite composite was prepared via an ex-situ combustion, and the effect of in-situ phases on the magnetocapacitance response has been explored. Plate-like barium hexaferrite and hexagonal barium titanate were appeared in the composite along with polyhedral barium titanate and cobalt ferrite. The highest permittivity was found ~ 1890 at low frequency due to the development of Maxwell–Wagner polarization at the interface of plate and polyhedral morphologies. The highest magnetocapacitance response was found ~ − 9.81% at 0.43 kOe in composite which was analogues to dM/dH maxima at ~ 0.5 kOe. The lowest magnetoresistance of barium hexaferrite confirmed the magneto-dielectric coupling among the phases in the composite. The marginal electrical inhomogeneity and magnetoresistance influenced the magnetocapacitance behavior in the composite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files]. The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  ADS  CAS  PubMed  Google Scholar 

  2. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

  3. N.A. Spaldin, S.W. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010). https://doi.org/10.1063/1.3502547

    Article  Google Scholar 

  4. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22, 2900–2918 (2010). https://doi.org/10.1002/adma.200904326

    Article  CAS  PubMed  Google Scholar 

  5. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003). https://doi.org/10.1038/nature02018

    Article  ADS  CAS  PubMed  Google Scholar 

  6. M.D. Chermahini, M.M. Shahraki, M. Kazazi, Multiferroic properties of novel lead-free KNN-LT/20NZCFO magneto-electric composites. Mater. Lett. 233, 188–190 (2018). https://doi.org/10.1016/j.matlet.2018.09.001

    Article  CAS  Google Scholar 

  7. Y. Liu, G. Xu, Y. Xie, H. Lv, C. Huang, Y. Chen, Z. Tong, J. Shi, R. Xiong, Magnetoelectric behaviors in BaTiO3/CoFe2O4/BaTiO3 laminated ceramic composites prepared by spark plasma sintering. Ceram. Int. 44, 9649–9655 (2018). https://doi.org/10.1016/j.ceramint.2018.02.192

    Article  CAS  Google Scholar 

  8. M. Atif, S. Ahmed, M. Nadeem, M.N. Khan, Complex dielectric and impedance analysis in a relaxor type ferroelectric/ferrimagnetic magnetoelectric (0.5)PbZr0.52Ti0.48O3+(0.5)CoFe2O4 composite. J. Alloys Compd. 735, 880–889 (2018). https://doi.org/10.1016/j.jallcom.2017.11.168

    Article  CAS  Google Scholar 

  9. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000). https://doi.org/10.1021/jp000114x

    Article  CAS  Google Scholar 

  10. M.I. Bichurin, V.M. Petrov, Modeling of magnetoelectric interaction in magnetostrictive-piezoelectric composites. Adv. Condens. Matter Phys. 2012, 1–12 (2012). https://doi.org/10.1155/2012/798310

    Article  CAS  Google Scholar 

  11. K. Raidongia, A. Nag, A. Sundaresan, C.N.R. Rao, Multiferroic and magnetoelectric properties of core-shell CoFe2O4 @ BaTiO3 nanocomposites. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3478231

    Article  Google Scholar 

  12. A. Chaudhuri, K. Mandal, Large magnetoelectric properties in CoFe2O4:BaTiO3 core–shell nanocomposites. J. Magn. Magn. Mater. 377, 441–445 (2015). https://doi.org/10.1016/j.jmmm.2014.10.142

    Article  ADS  CAS  Google Scholar 

  13. S. Pachari, S.K. Pratihar, B.B. Nayak, Microstructure and magnetoresistance driven magnetocapacitance in ex-situ combustion derived BaTiO3-CoFe2O4 bulk magnetodielectric composites. J. Magn. Magn. Mater. 561, 169735 (2022). https://doi.org/10.1016/j.jmmm.2022.169735

    Article  CAS  Google Scholar 

  14. D.K. Pradhan, S. Kumari, P.D. Rack, Magnetoelectric composites: applications coupling mechanisms, and future directions. Nanomaterials 10, 2072 (2020). https://doi.org/10.3390/nano10102072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G. Schileo, Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol-gel routes. Prog. Solid State Chem. 41, 87–98 (2013). https://doi.org/10.1016/j.progsolidstchem.2013.09.001

    Article  CAS  Google Scholar 

  16. V. Buscaglia, M.T. Buscaglia, Core-Shell Heterostructures: From Particle Synthesis to Bulk Dielectric, Ferroelectric, and Multiferroic Composite Materials, in Nanoscale Ferroelectrics Multiferroics. (Wiley, Chichester, 2016), pp.72–99

    Chapter  Google Scholar 

  17. M. Šuljagić, I. Petronijević, M.M. Mirković, A. Kremenović, A. Džunuzović, V.B. Pavlović, A. Kalezić-Glišović, L. Andjelković, BaTiO3/NixZn1−xFe2O4 (x = 0, 0.5, 1) composites synthesized by thermal decomposition: magnetic. Dielectr. Ferroelectr. Prop. Inorg. 11, 51 (2023). https://doi.org/10.3390/inorganics11020051

    Article  CAS  Google Scholar 

  18. S. Singh, N. Kumar, R. Bhargava, M. Sahni, K.D. Sung, J.H. Jung, Magnetodielectric effect in BaTiO3/ZnFe2O4 core/shell nanoparticles. J. Alloys Compd. 587, 437–441 (2014). https://doi.org/10.1016/j.jallcom.2013.10.136

    Article  CAS  Google Scholar 

  19. L.F. Henrichs, X. Mu, T. Scherer, U. Gerhards, S. Schuppler, P. Nagel, M. Merz, C. Kübel, M.H. Fawey, T.C. Hansen, H. Hahn, First-time synthesis of a magnetoelectric core–shell composite via conventional solid-state reaction. Nanoscale 12, 15677–15686 (2020). https://doi.org/10.1039/D0NR02475A

    Article  CAS  PubMed  Google Scholar 

  20. S.Q. Ren, L.Q. Weng, S.H. Song, F. Li, J.G. Wan, M. Zeng, BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 40, 4375–4378 (2005). https://doi.org/10.1007/s10853-005-1057-1

    Article  ADS  CAS  Google Scholar 

  21. S. Kuila, S. Tiwary, M.R. Sahoo, A. Barik, P.D. Babu, V. Siruguri, B. Birajdar, P.N. Vishwakarma, Study of magnetization and magnetoelectricity in CoFe2O4 /BiFeO3 core-shell composites. J. Appl. Phys. 123, 064101 (2018). https://doi.org/10.1063/1.5008542

    Article  ADS  CAS  Google Scholar 

  22. M.A. Ali, M.N.I. Khan, F.-U.-Z. Chowdhury, S. Akhter, M.M. Uddin, Structural properties, impedance spectroscopy and dielectric spin relaxation of Ni–Zn ferrite synthesized by double sintering technique. J. Sci. Res. 7, 65–75 (2015). https://doi.org/10.3329/jsr.v7i3.23358

    Article  CAS  Google Scholar 

  23. M.M. Selvi, P. Manimuthu, K.S. Kumar, C. Venkateswaran, Magnetodielectric properties of CoFe2O4-BaTiO3 core-shell nanocomposite. J. Magn. Magn. Mater. 369, 155–161 (2014). https://doi.org/10.1016/j.jmmm.2014.06.039

    Article  ADS  CAS  Google Scholar 

  24. S.H. Choi, J.H. Oh, T. Ko, Preparation and characteristics of Fe3O4-encapsulated BaTiO3 powder by ultrasound-enhanced ferrite plating. J. Magn. Magn. Mater. 272–276, 2233–2235 (2004). https://doi.org/10.1016/j.jmmm.2003.12.925

    Article  ADS  CAS  Google Scholar 

  25. H.K. Park, S.H. Choi, J.H. Oh, T. Ko, Preparation and characteristics of a magnetic–dielectric (Fe3O4/BaTiO3) composite by ferrite plating with ultrasound irradiation. Phys. Status Solidi 241, 1693–1696 (2004). https://doi.org/10.1002/pssb.200304636

    Article  CAS  Google Scholar 

  26. Y.S. Koo, T. Bonaedy, K.D. Sung, J.H. Jung, J.B. Yoon, Y.H. Jo, M.H. Jung, H.J. Lee, T.Y. Koo, Y.H. Jeong, Magnetodielectric coupling in core/shell BaTiO3∕γ-Fe2O3 nanoparticles. Appl. Phys. Lett. 91, 212903 (2007). https://doi.org/10.1063/1.2817940

    Article  ADS  CAS  Google Scholar 

  27. D. Dhak, S. Hong, S. Das, P. Dhak, Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials. J. Nanomater. 2015, 1–2 (2015). https://doi.org/10.1155/2015/723145

    Article  Google Scholar 

  28. T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, P. Saravanan, M.V.R. Reddy, N. Kalarikkal, A comparative study on structural, dielectric and multiferroic properties of CaFe2O4/BaTiO3 core-shell and mixed composites. J. Alloys Compd. 691, 644–652 (2017). https://doi.org/10.1016/j.jallcom.2016.08.277

    Article  CAS  Google Scholar 

  29. M. Cernea, R. Radu, H. Amorín, S.G. Greculeasa, B.S. Vasile, V.A. Surdu, P. Ganea, R. Trusca, M. Hattab, C. Galassi, Lead-Free BNT–BT0.08/CoFe2O4 core-shell nanostructures with potential multifunctional applications. Nanomaterials 10, 672 (2020). https://doi.org/10.3390/nano10040672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S.E. Shirsath, S.S. Jadhav, M.L. Mane, S. Li, Ferrites Obtained by Sol-Gel Method, in Handbook of Sol-Gel Science and Technology. ed. by L. Klein, M. Aparicio, A. Jitianu (Springer, Cham, 2016), pp.1–41. https://doi.org/10.1007/978-3-319-19454-7_125-1

    Chapter  Google Scholar 

  31. A.R. Iordan, M. Airimioaiei, M.N. Palamaru, C. Galassi, A.V. Sandu, C.E. Ciomaga, F. Prihor, L. Mitoseriu, A. Ianculescu, In situ preparation of CoFe2O4–Pb(ZrTi)O3 multiferroic composites by gel-combustion technique. J. Eur. Ceram. Soc. 29, 2807–2813 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.03.031

    Article  CAS  Google Scholar 

  32. S. Pachari, S.K. Pratihar, B.B. Nayak, Microstructure driven magnetodielectric behavior in ex-situ combustion derived BaTiO3-ferrite multiferroic composites. J. Magn. Magn. Mater. 505, 166741 (2020). https://doi.org/10.1016/j.jmmm.2020.166741

    Article  CAS  Google Scholar 

  33. S. Pachari, S.K. Pratihar, B.B. Nayak, Improved magneto-capacitance response in combustion derived BaTiO3-(CoFe2O4/ZnFe2O4/Co0.5Zn0.5Fe2O4) composites. J. Alloys Compd. 784, 897–905 (2019). https://doi.org/10.1016/j.jallcom.2019.01.118

    Article  CAS  Google Scholar 

  34. M. Etier, C. Schmitz-Antoniak, S. Salamon, H. Trivedi, Y. Gao, A. Nazrabi, J. Landers, D. Gautam, M. Winterer, D. Schmitz, H. Wende, V.V. Shvartsman, D.C. Lupascu, Magnetoelectric coupling on multiferroic cobalt ferrite–barium titanate ceramic composites with different connectivity schemes. Acta Mater. 90, 1–9 (2015). https://doi.org/10.1016/j.actamat.2015.02.032

    Article  ADS  CAS  Google Scholar 

  35. V. Corral-Flores, D. Bueno-Baqués, R.F. Ziolo, Synthesis and characterization of novel CoFe2O4-BaTiO3 multiferroic core-shell-type nanostructures. Acta Mater. 58, 764–769 (2010). https://doi.org/10.1016/j.actamat.2009.09.054

    Article  ADS  CAS  Google Scholar 

  36. V. Giap, R. Groessinger, R.S. Tuertelli, Magnetoelectric properties of CoFe2O4-BaTiO3 core-shell structure composites. INTERMAG 2006—IEEE Int. Magn. Conf IEEE 4, 830–830 (2006). https://doi.org/10.1109/INTMAG.2006.374861

    Article  Google Scholar 

  37. M. Etier, Y. Gao, V.V. Shvartsman, A. Elsukova, J. Landers, H. Wende, D.C. Lupascu, Cobalt ferrite/barium titanate core/shell nanoparticles. Ferroelectrics 438, 115–122 (2012). https://doi.org/10.1080/00150193.2012.743773

    Article  ADS  CAS  Google Scholar 

  38. J. Nie, G. Xu, Y. Yang, C. Cheng, Strong magnetoelectric coupling in CoFe2O4–BaTiO3 composites prepared by molten-salt synthesis method. Mater. Chem. Phys. 115, 400–403 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.011

    Article  CAS  Google Scholar 

  39. Y. Deng, J. Zhou, D. Wu, Y.Y. Du, M. Zhang, D. Wang, H. Yu, S. Tang, Y.Y. Du, Three-dimensional phases-connectivity and strong magnetoelectric response of self-assembled feather-like CoFe2O4–BaTiO3 nanostructures. Chem. Phys. Lett. 496, 301–305 (2010). https://doi.org/10.1016/j.cplett.2010.07.048

    Article  ADS  CAS  Google Scholar 

  40. H. Yang, G. Zhang, Y. Lin, F. Wang, Enhanced Curie temperature and magnetoelectric effects in the BaTiO3-based piezoelectrics and CoFe2O4 laminate composites. Mater. Lett. 157, 99–102 (2015). https://doi.org/10.1016/j.matlet.2015.05.072

    Article  CAS  Google Scholar 

  41. K. Zhang, T. Holloway, A.K. Pradhan, Magnetic behavior of nanocrystalline CoFe2O4. J. Magn. Magn. Mater. 323, 1616–1622 (2011). https://doi.org/10.1016/j.jmmm.2011.01.022

    Article  ADS  CAS  Google Scholar 

  42. J.Y. Zhai, N. Cai, L. Liu, Y.H. Lin, C.W. Nan, Dielectric behavior and magnetoelectric properties of lead zirconate titanate/Co-ferrite particulate composites. Mater. Sci. Eng. B 99, 329–331 (2003). https://doi.org/10.1016/S0921-5107(02)00565-2

    Article  CAS  Google Scholar 

  43. L.V. Leonel, A. Righi, W.N. Mussel, J.B. Silva, N.D.S. Mohallem, Structural characterization of barium titanate–cobalt ferrite composite powders. Ceram. Int. 37, 1259–1264 (2011). https://doi.org/10.1016/j.ceramint.2011.01.017

    Article  CAS  Google Scholar 

  44. I. Kagomiya, Y. Hayashi, K. Kakimoto, K. Kobayashi, Magnetic field dependence of piezoelectric resonance frequency in CoFe2O4–BaTiO3 composites. J. Magn. Magn. Mater. 324, 2368–2372 (2012). https://doi.org/10.1016/j.jmmm.2012.03.002

    Article  ADS  CAS  Google Scholar 

  45. R.A. Mondal, B.S. Murty, V.R.K. Murthy, Dielectric, magnetic and enhanced magnetoelectric response in high energy ball milling assisted BST-NZF particulate composite. Mater. Chem. Phys. 167, 338–346 (2015). https://doi.org/10.1016/j.matchemphys.2015.10.053

    Article  CAS  Google Scholar 

  46. P.R. Mandal, T.K. Nath, Enhanced magnetocapacitance and dielectric property of Co 0.65Zn0.35Fe2O4-PbZr0.52Ti0.48O3 magnetodielectric composites. J. Alloys Compd. 599, 71–77 (2014). https://doi.org/10.1016/j.jallcom.2014.02.036

    Article  CAS  Google Scholar 

  47. Y. Kumar, K.L. Yadav, J. Shah, R.K. Kotnala, Investigation of magnetoelectric effect in lead free K0.5Na0.5NbO3-BaFe12O19 novel composite system. J. Adv. Ceram. 8, 333–344 (2019). https://doi.org/10.1007/s40145-019-0315-7

    Article  CAS  Google Scholar 

  48. D.A. Filippov, V.M. Laletin, G. Srinivasan, Low-frequency and resonance magnetoelectric effects in nickel ferrite-PZT bulk composites. Tech. Phys. 57, 44–47 (2012). https://doi.org/10.1134/S1063784212010082

    Article  CAS  Google Scholar 

  49. M.T. Buscaglia, V. Buscaglia, L. Curecheriu, P. Postolache, L. Mitoseriu, A.C. Ianculescu, B.S. Vasile, Z. Zhe, P. Nanni, Fe2O3@BaTiO3 core-shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases. Chem. Mater. 22, 4740–4748 (2010). https://doi.org/10.1021/cm1011982

    Article  CAS  Google Scholar 

  50. D. Ghosh, H. Han, J.C. Nino, G. Subhash, J.L. Jones, Synthesis of BaTiO3-20wt%CoFe2O4 nanocomposites via spark plasma sintering. J. Am. Ceram. Soc. 95, 2504–2509 (2012). https://doi.org/10.1111/j.1551-2916.2012.05221.x

    Article  CAS  Google Scholar 

  51. S. Pachari, S.K. Pratihar, B.B. Nayak, Enhanced magneto-capacitance response in BaTiO3 –ferrite composite systems. RSC Adv. 5, 105609–105617 (2015). https://doi.org/10.1039/C5RA16742F

    Article  ADS  CAS  Google Scholar 

  52. K. Venkata Siva, P. Kaviraj, A. Arockiarajan, Improved room temperature magnetoelectric response in CoFe2O4-BaTiO3 core shell and bipolar magnetostrictive properties in CoFe2O4. Mater. Lett. 268, 127623 (2020). https://doi.org/10.1016/j.matlet.2020.127623

    Article  CAS  Google Scholar 

  53. R. Adnan Islam, S. Priya, Progress in dual (Piezoelectric-Magnetostrictive) phase magnetoelectric sintered composites. Adv. Condens. Matter Phys. 2012, 1–29 (2012). https://doi.org/10.1155/2012/320612

    Article  ADS  CAS  Google Scholar 

  54. S. Ahmed, M. Atif, A.U. Rehman, S. Bashir, N. Iqbal, W. Khalid, Z. Ali, M. Nadeem, Enhancement in the magnetoelectric and energy storage properties of core-shell-like CoFe2O4 BaTiO3 multiferroic nanocomposite. J. Alloys Compd. 883, 160875 (2021). https://doi.org/10.1016/j.jallcom.2021.160875

    Article  CAS  Google Scholar 

  55. S. Premkumar, V.L. Mathe, Effect of co-sintering time on magnetoelectric response of Pb 0.895 Sr 0.06 La 0.03 (Zr 0.56, Ti 0.44)O 3 multilayer–Ni 0.6 Zn 0.4 Fe 2 O 4 composite fabricated by tape casting. J. Appl. Phys. 126, 084106 (2019). https://doi.org/10.1063/1.5099299

    Article  CAS  Google Scholar 

  56. B.N. Rao, P. Kaviraj, S.R. Vaibavi, A. Kumar, S.K. Bajpai, A. Arockiarajan, Investigation of magnetoelectric properties and biocompatibility of CoFe 2 O 4 -BaTiO 3 core-shell nanoparticles for biomedical applications. J. Appl. Phys. 122, 164102 (2017). https://doi.org/10.1063/1.4993831

    Article  ADS  CAS  Google Scholar 

  57. İC. Kaya, V. Kalem, H. Akyildiz, Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: study on photocatalytic and dielectric properties. Int. J. Appl. Ceram. Technol. 16, 1557–1569 (2019). https://doi.org/10.1111/ijac.13225

    Article  CAS  Google Scholar 

  58. M. Yashima, T. Hoshina, D. Ishimura, S. Kobayashi, W. Nakamura, T. Tsurumi, S. Wada, Size effect on the crystal structure of barium titanate nanoparticles. J. Appl. Phys. 98, 014313 (2005). https://doi.org/10.1063/1.1935132

    Article  ADS  CAS  Google Scholar 

  59. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997–2007 (2000). https://doi.org/10.1016/S0955-2219(00)00076-5

    Article  CAS  Google Scholar 

  60. A. Pakalniškis, A. Lukowiak, G. Niaura, P. Głuchowski, D.V. Karpinsky, D.O. Alikin, A.S. Abramov, A. Zhaludkevich, M. Silibin, A.L. Kholkin, R. Skaudžius, W. Strek, A. Kareiva, Nanoscale ferroelectricity in pseudo-cubic sol-gel derived barium titanate - bismuth ferrite (BaTiO3– BiFeO3) solid solutions. J. Alloys Compd. 830, 154632 (2020). https://doi.org/10.1016/j.jallcom.2020.154632

    Article  CAS  Google Scholar 

  61. H. Zheng, W.J. Weng, G.R. Han, P.Y. Du, Crucial role of percolation transition on the formation and electromagnetic properties of BaTiO3/Ni0.5Zn0.47Fe2O4 ceramic composites. Ceram. Int. 41, 1511–1519 (2015). https://doi.org/10.1016/j.ceramint.2014.09.086

    Article  CAS  Google Scholar 

  62. L. Curecheriu, P. Postolache, V. Buscaglia, N. Horchidan, M. Alexe, L. Mitoseriu, BaTiO 3 –ferrite composites with magnetocapacitance and hard/soft magnetic properties. Phase Transitions 86, 670–680 (2013). https://doi.org/10.1080/01411594.2012.756879

    Article  CAS  Google Scholar 

  63. H. Yang, H. Wang, L. He, X. Yao, Hexagonal BaTiO 3/Ni 0.8Zn 0.2Fe 2O 4 composites with giant dielectric constant and high permeability. Mater. Chem. Phys. 134, 777–782 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.068

    Article  CAS  Google Scholar 

  64. L. Huang, Z. Chen, J.D. Wilson, S. Banerjee, R.D. Robinson, I.P. Herman, R. Laibowitz, S. O’Brien, Barium titanate nanocrystals and nanocrystal thin films: synthesis, ferroelectricity, and dielectric properties. J. Appl. Phys. 100, 4–6 (2006). https://doi.org/10.1063/1.2218765

    Article  CAS  Google Scholar 

  65. N. Masó, H. Beltrán, E. Cordoncillo, P. Escribano, A.R. West, Electrical properties of Fe-doped BaTiO3. J. Mater. Chem. 16, 1626–1633 (2006). https://doi.org/10.1039/b515834f

    Article  CAS  Google Scholar 

  66. A. Khamkongkaeo, P. Jantaratana, C. Sirisathitkul, T. Yamwong, S. Maensiri, Frequency-dependent magnetoelectricity of CoFe 2O 4-BaTiO 3 particulate composites. Trans. Nonferrous Met. Soc. China 21, 2438–2442 (2011). https://doi.org/10.1016/S1003-6326(11)61033-9

    Article  CAS  Google Scholar 

  67. J.A. Nairn, Matrix Microcracking in Composites, in Comprehensive Composite Materials. (Elsevier, Amsterdam, 2000), pp.403–432

    Chapter  Google Scholar 

  68. R. Zhang, L. Sun, Z. Wang, W. Hao, E. Cao, Y. Zhang, Dielectric and magnetic properties of CoFe2O4 prepared by sol-gel auto-combustion method. Mater. Res. Bull. 98, 133–138 (2018). https://doi.org/10.1016/j.materresbull.2017.08.006

    Article  CAS  Google Scholar 

  69. M.E. Hajlaoui, R. Dhahri, N. Hnainia, A. Benchaabane, E. Dhahri, K. Khirouni, Conductivity and giant permittivity study of Zn 0.5 Ni 0.5 Fe 2 O 4 spinel ferrite as a function of frequency and temperature. RSC Adv. 9, 32395–32402 (2019). https://doi.org/10.1039/C9RA06589J

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. B. Matthias, A. von Hippel, Domain structure and dielectric response of barium titanate single crystals. Phys. Rev. 73, 1378–1384 (1948). https://doi.org/10.1103/PhysRev.73.1378

    Article  ADS  CAS  Google Scholar 

  71. M. Rafique, S.Q.U. Hassan, M.S. Awan, S. Manzoor, Dependence of magnetoelectric properties on the magnetostrictive content in 0–3 composites. Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.10.064

    Article  Google Scholar 

  72. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marré, A.S. Siri, P. Nanni, Preparation of multiferroic composites of BaTiO3-Ni0.5Zn0.5Fe2O 4 ceramics. J. Eur. Ceram. Soc. 26, 3031–3036 (2006). https://doi.org/10.1016/j.jeurceramsoc.2006.02.022

    Article  CAS  Google Scholar 

  73. R.S. Devan, B.K. Chougule, Effect of composition on coupled electric, magnetic, and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2404773

    Article  Google Scholar 

  74. Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, Fabrication, structure and properties of BaTiO3-BaFe12O19 composites with core-shell heterostructure. J. Eur. Ceram. Soc. 35, 3513–3520 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.06.016

    Article  CAS  Google Scholar 

  75. J. Iniguez, C. Pereira, J. Rivas, Effect of porosity on the magnetic behaviour of nickel ferrites. Appl. Phys. A Solids Surf. 36, 159–161 (1985). https://doi.org/10.1007/BF00624937

    Article  ADS  Google Scholar 

  76. E. Peng, X. Wei, T.S. Herng, U. Garbe, D. Yu, J. Ding, Ferrite-based soft and hard magnetic structures by extrusion free-forming. RSC Adv. 7, 27128–27138 (2017). https://doi.org/10.1039/C7RA03251J

    Article  ADS  CAS  Google Scholar 

  77. X. Li, G.-L. Tan, Multiferroic and magnetoelectronic polarizations in BaFe12O19 system. J. Alloys Compd. 858, 157722 (2021). https://doi.org/10.1016/j.jallcom.2020.157722

    Article  CAS  Google Scholar 

  78. S. Liu, P. Gao, H. Zou, B. Qin, J. He, L. Deng, Large magnetoelectric effect in particulate composite BaFe12O19-(Ba0.85Ca0.15)(Zr0.1Ti0.9)O3. Adv. Powder Mater. 1(3), 100022 (2021). https://doi.org/10.1016/j.apmate.2021.12.001

    Article  Google Scholar 

  79. F. Licci, S. Rinaldi, Magnetostriction of some hexagonal ferrites. J. Appl. Phys. 52, 2442–2443 (1981). https://doi.org/10.1063/1.328961

    Article  ADS  CAS  Google Scholar 

  80. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2177543

    Article  Google Scholar 

  81. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906

    Article  ADS  CAS  Google Scholar 

  82. R.H. Cole, Dielectrics in physical chemistry. Annu. Rev. Phys. Chem. 40, 1–29 (1989). https://doi.org/10.1146/annurev.pc.40.100189.000245

    Article  ADS  CAS  PubMed  Google Scholar 

  83. D.K. Pradhan, R.N.P. Chowdhury, T.K. Nath, Magnetoelectric properties of PbZr0.53Ti0.47O3–Ni0.65Zn0.35Fe2O4 multiferroic nanocomposites. Appl. Nanosci. 2, 261–273 (2012). https://doi.org/10.1007/s13204-012-0103-y

    Article  ADS  CAS  Google Scholar 

  84. R. Das, R.N.P. Choudhary, Dielectric relaxation and magneto-electric characteristics of lead-free double perovskite: Sm2NiMnO6. J. Adv. Ceram. 8, 174–185 (2019). https://doi.org/10.1007/s40145-018-0303-3

    Article  CAS  Google Scholar 

  85. S. Kumar, J. Pal, S. Kaur, P.S. Malhi, M. Singh, P.D. Babu, A. Singh, The structural and magnetic properties, non-Debye relaxation and hopping mechanism in Pb x Nd 1–x FeO 3 (where x = 0.1, 0.2 and 0.3) solid solutions. J. Asian Ceram. Soc. 7, 133–140 (2019). https://doi.org/10.1080/21870764.2019.1579406

    Article  Google Scholar 

  86. A. Srinivas, R. Gopalan, V. Chandrasekharan, Room temperature multiferroism and magnetoelectric coupling in BaTiO3 - BaFe12 O19 system. Solid State Commun. 149, 367–370 (2009). https://doi.org/10.1016/j.ssc.2008.12.013

    Article  ADS  CAS  Google Scholar 

  87. Y.M. Xu, N. Zhang, Magnetocapacitance effects in MnZn ferrites. AIP Adv. 5, 117130 (2015). https://doi.org/10.1063/1.4935924

    Article  ADS  CAS  Google Scholar 

  88. T. Bonaedy, Y.S. Koo, K.D. Sung, J.H. Jung, Resistive magnetodielectric property of polycrystalline γ-Fe2O3. Appl. Phys. Lett. 91, 132901 (2007). https://doi.org/10.1063/1.2790474

    Article  ADS  CAS  Google Scholar 

  89. N. Adhlakha, K.L. Yadav, R. Singh, Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4–0.7BiFeO3 ceramics. Smart Mater. Struct. 23, 105024 (2014). https://doi.org/10.1088/0964-1726/23/10/105024

    Article  ADS  CAS  Google Scholar 

  90. K.C. Verma, R.K. Kotnala, Nanostructural and lattice contributions to multiferroism in NiFe2O4/BaTiO3. Mater. Chem. Phys. 174, 120–128 (2016). https://doi.org/10.1016/j.matchemphys.2016.02.058

    Article  CAS  Google Scholar 

  91. S.N. Lee, H.J. Shim, I.-B. Shim, Thickness-dependent magnetocapacitance of Ni0.98Co0.02Fe2O4/BaTiO3/Ni0.98Co0.02Fe2O4 Trilayers. J. Electron. Mater. 44, 4373–4378 (2015). https://doi.org/10.1007/s11664-015-3933-z

    Article  ADS  CAS  Google Scholar 

  92. Z. Dong, Y. Pu, G. Shen, Large magnetodielectric effect of BaTiO3 –BaFe12O19 composites in a low magnetic field. ACS Omega 7, 45381–45385 (2022). https://doi.org/10.1021/acsomega.2c05975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. M.D. Rather, R. Samad, B. Want, Electric, magnetic, and magnetoelectric properties of yttrium-containing BaY0.025Ti0.9625O3–SrFe12O19 composite. J. Electron. Mater. 47, 2143–2154 (2018). https://doi.org/10.1007/s11664-017-6025-4

    Article  ADS  CAS  Google Scholar 

  94. K.C. Verma, M. Singh, R.K. Kotnala, N. Goyal, Magnetic field control of polarization/capacitance/voltage/resistance through lattice strain in BaTiO3-CoFe2O4 multiferroic nanocomposite. J. Magn. Magn. Mater. 469, 483–493 (2019). https://doi.org/10.1016/j.jmmm.2018.09.020

    Article  ADS  CAS  Google Scholar 

  95. F.L. Zabotto, F.P. Milton, A.J. Gualdi, A.J.A. de Oliveira, J.A. Eiras, D. Garcia, Magnetodielectric and magnetoelectric correlation in (1–x)PMN-PT/xCFO 0–3 particulate composites. J. Alloys Compd. 829, 154517 (2020). https://doi.org/10.1016/j.jallcom.2020.154517

    Article  CAS  Google Scholar 

  96. S. Roy, R. Katoch, S. Angappane, Extraordinary ferromagnetic coupling and magnetodielectric phenomena in NiO nanoparticles. IEEE Trans. Magn. 55, 1–4 (2019). https://doi.org/10.1109/TMAG.2018.2865678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhuti B. Nayak.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2725 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachari, S., Pratihar, S.K. & Nayak, B.B. Influence of in-situ phases on the magnetocapacitance response of ex-situ combustion derived BaTiO3–ferrite composite. Journal of Materials Research 39, 377–387 (2024). https://doi.org/10.1557/s43578-023-01231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01231-2

Keywords

Navigation