Skip to main content
Log in

Fermion masses and mixings, dark matter, leptogenesis and \(g-2\) muon anomaly in an extended 2HDM with inverse seesaw

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a predictive \(Q_4\) flavored 2HDM model, where the scalar sector is enlarged by the inclusion of several gauge singlet scalars and the fermion sector by the inclusion of right-handed Majorana neutrinos. In our model, the \(Q_4\) family symmetry is supplemented by several auxiliary cyclic symmetries, whose spontaneous breaking produces the observed pattern of SM charged fermion masses and quark mixing angles. The light active neutrino masses are generated from an inverse seesaw mechanism at one loop level thanks to a remnant preserved \(Z_2\) symmetry. Our model successfully reproduces the measured dark matter relic abundance and is consistent with direct detection constraints for masses of the DM candidate around \(\sim\) 6.3 TeV. Furthermore, our model is also consistent with the lepton and baryon asymmetries of the Universe as well as with the muon anomalous magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. Authors comment: This article is based on research in theoretical physics. Therefore, there are no associated data to be deposited.

Notes

  1. In addition to the parameters of the mass and mixing matrices from the quark and charged lepton sector, which are kept fixed in the analysis of the scalar and DM sectors. (The neutrino sector parameters influence the baryon asymmetry observable.)

  2. These expressions are not general in the sense that they are not valid for cases where there are degenerate eigenvalues or when one or more of the matrix entries are zero, these atypical cases should be treated separately. In particular, these equations are not expected to reduce to the correct results in the limit \(\lambda _7 = \lambda _9 = 0\), which is not contemplated since in this case four matrix entries reduce to zero. In the parameter scan we use standard numerical algorithms to diagonalize the mass matrices.

  3. For this part of the numerical scan we neglect the masses of the first and second generation of fermions and neglect off-diagonal entries in the Yukawa matrices. We expect deviations of the matter sector relative to the SM to be of negligible influence in the phenomenology of the scalar sector at present collider searches.

  4. A second case, namely that one of the \(\eta\) fields is the lightest of the DM particles, is of course also possible leading to a scalar DM candidate. In this letter we focus our attention on the fermion DM candidate in part because of a matter of taste and in part because of the demanding computational times required for the numerical analysis which make unfeasible to present both cases in a single piece. We restrict our analysis to the scenario of fermionic dark matter only, because the case of scalar dark matter candidate is a bit generic and our expected results will be similar to those ones discussed in [51,52,53], where the dark matter constraints set the mass of scalar dark matter candidates larger than about few TeVs or in a small window close to the half of the SM Higgs boson mass. Besides that, one can also consider the scenario of multicomponent dark matter candidates; however, such scenario requires careful analysis which are beyond the scope of the present work.

  5. For better comparison with the other curves we extrapolated linearly the data available from this reference from 1 TeV up to 10 TeV.

References

  1. S.F. King, C. Luhn, Neutrino mass and mixing with discrete symmetry. Rept. Prog. Phys. 76, 056201 (2013). https://doi.org/10.1088/0034-4885/76/5/056201. arXiv:1301.1340 [hep-ph]

    Article  ADS  Google Scholar 

  2. G. Altarelli, F. Feruglio, Discrete flavor symmetries and models of neutrino mixing. Rev. Mod. Phys. 82, 2701–2729 (2010). https://doi.org/10.1103/RevModPhys.82.2701. arXiv:1002.0211 [hep-ph]

    Article  ADS  Google Scholar 

  3. H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, M. Tanimoto, Non-abelian discrete symmetries in particle physics. Prog. Theor. Phys. Suppl. 183, 1–163 (2010). https://doi.org/10.1143/PTPS.183.1. arXiv:1003.3552 [hep-th]

    Article  ADS  MATH  Google Scholar 

  4. S.F. King, Models of neutrino mass, mixing and CP violation. J. Phys. G42, 123001 (2015). https://doi.org/10.1088/0954-3899/42/12/123001. arXiv:1510.02091 [hep-ph]

    Article  ADS  Google Scholar 

  5. I. Lovrekovic, “Dark Matter from Q4 Extension of Standard Model,” arXiv:1212.1145 [hep-ph]

  6. V.V. Vien, D.P. Khoi, Fermion masses and mixings in a 3–3-1 model with \(Q_4\) symmetry. Mod. Phys. Lett. 34(25), 1950198 (2019). https://doi.org/10.1142/S0217732319501980

    Article  ADS  Google Scholar 

  7. P.H. Frampton, T.W. Kephart, Simple nonAbelian finite flavor groups and fermion masses. Int. J. Mod. Phys. A 10, 4689–4704 (1995). https://doi.org/10.1142/S0217751X95002187. arXiv:hep-ph/9409330 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  8. W. Grimus, L. Lavoura, A Discrete symmetry group for maximal atmospheric neutrino mixing. Phys. Lett. B 572, 189–195 (2003). https://doi.org/10.1016/j.physletb.2003.08.032. arXiv:hep-ph/0305046 [hep-ph]

    Article  ADS  Google Scholar 

  9. W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, M. Tanimoto, Lepton mixing angle \(\theta _{13} = 0\) with a horizontal symmetry \(D_4\). JHEP 07, 078 (2004). https://doi.org/10.1088/1126-6708/2004/07/078. arXiv:hep-ph/0407112 [hep-ph]

    Article  ADS  Google Scholar 

  10. M. Frigerio, S. Kaneko, E. Ma, M. Tanimoto, Quaternion family symmetry of quarks and leptons. Phys. Rev. D 71, 011901 (2005). https://doi.org/10.1103/PhysRevD.71.011901. arXiv:hep-ph/0409187 [hep-ph]

    Article  ADS  Google Scholar 

  11. A. Blum, C. Hagedorn, M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups. Phys. Rev. D 77, 076004 (2008). https://doi.org/10.1103/PhysRevD.77.076004. arXiv:0709.3450 [hep-ph]

    Article  ADS  Google Scholar 

  12. A. Adulpravitchai, A. Blum, C. Hagedorn, A Supersymmetric D4 Model for mu-tau Symmetry. JHEP 03, 046 (2009). https://doi.org/10.1088/1126-6708/2009/03/046. arXiv:0812.3799 [hep-ph]

    Article  ADS  Google Scholar 

  13. H. Ishimori, T. Kobayashi, H. Ohki, Y. Omura, R. Takahashi, M. Tanimoto, D(4) flavor symmetry for neutrino masses and mixing. Phys. Lett. B 662, 178–184 (2008). https://doi.org/10.1016/j.physletb.2008.03.007. arXiv:0802.2310 [hep-ph]

    Article  ADS  Google Scholar 

  14. C. Hagedorn, R. Ziegler, \(\mu -\tau\) symmetry and charged lepton mass hierarchy in a supersymmetric \(D_4\) model. Phys. Rev. D 82, 053011 (2010). https://doi.org/10.1103/PhysRevD.82.053011. arXiv:1007.1888 [hep-ph]

    Article  ADS  Google Scholar 

  15. D. Meloni, S. Morisi, E. Peinado, Stability of dark matter from the D4xZ2 flavor group. Phys. Lett. B 703, 281–287 (2011). https://doi.org/10.1016/j.physletb.2011.07.084. arXiv:1104.0178 [hep-ph]

    Article  ADS  Google Scholar 

  16. V.V. Vien, H.N. Long, The \(D_4\) flavor symmery in 3–3-1 model with neutral leptons. Int. J. Mod. Phys. A 28, 1350159 (2013). https://doi.org/10.1142/S0217751X13501595. arXiv:1312.5034 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  17. V.V. Vien, H.N. Long, Quark masses and mixings in the 3–3-1 model with neutral leptons based on \(D_{4}\) flavor symmetry. J. Korean Phys. Soc. 66(12), 1809–1815 (2015). https://doi.org/10.3938/jkps.66.1809. (arXiv:1408.4333 [hep-ph])

    Article  ADS  Google Scholar 

  18. V.V. Vien, Neutrino mass and mixing in the 3–3-1 model with neutral leptons based on D4 flavor symmetry. Mod. Phys. Lett. A 29, 1450122 (2014). https://doi.org/10.1142/S0217732314501223

    Article  ADS  Google Scholar 

  19. A.E. Cárcamo Hernández, C.O. Dib, U.J. Saldaña-Salazar, When \(\tan \beta\) meets all the mixing angles. Phys. Lett. B809, 135750 (2020). https://doi.org/10.1016/j.physletb.2020.135750. arXiv:2001.07140 [hep-ph]

    Article  MathSciNet  MATH  Google Scholar 

  20. V.V. Vien, Fermion mass and mixing in the \(U(1)_{B-L}\) extension of the standard model with \(D_4\) symmetry. J. Phys. G47(5), 055007 (2020). https://doi.org/10.1088/1361-6471/ab7ec0

    Article  ADS  Google Scholar 

  21. C. Bonilla, L.M.G. de la Vega, R. Ferro-Hernandez, N. Nath, E. Peinado, Neutrino phenomenology in a left-right \(D_4\) symmetric model. Phys. Rev. D 102(3), 036006 (2020). https://doi.org/10.1103/PhysRevD.102.036006. arXiv:2003.06444 [hep-ph]

    Article  ADS  Google Scholar 

  22. P. Athron, C. Balázs, D.H.J. Jacob, W. Kotlarski, D. Stöckinger, H. Stöckinger-Kim, New physics explanations of a \(_{\mu }\) in light of the FNAL muon \(g-2\) measurement. JHEP 09, 080 (2021). https://doi.org/10.1007/JHEP09(2021)080. arXiv:2104.03691 [hep-ph]

    Article  ADS  Google Scholar 

  23. Muon g-2 Collaboration, B. Abi, et al., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett. 126(14), 141801 (2021). https://doi.org/10.1103/PhysRevLett.126.141801. arXiv:2104.03281 [hep-ex]

  24. S.S.C. Law, K.L. McDonald, Generalized inverse seesaw mechanisms. Phys. Rev. D 87(11), 113003 (2013). https://doi.org/10.1103/PhysRevD.87.113003. arXiv:1303.4887 [hep-ph]

    Article  ADS  Google Scholar 

  25. A. Mondragon, M. Mondragon, E. Peinado, S(3)-flavour symmetry as realized in lepton flavour violating processes. J. Phys. A 41, 304035 (2008). https://doi.org/10.1088/1751-8113/41/30/304035. arXiv:0712.1799 [hep-ph]

    Article  MATH  Google Scholar 

  26. R.A. Diaz, R. Martinez, J.A. Rodriguez, Phenomenology of lepton flavor violation in 2HDM(3) from (g-2)(mu) and leptonic decays. Phys. Rev. D 67, 075011 (2003). https://doi.org/10.1103/PhysRevD.67.075011. arXiv:hep-ph/0208117 [hep-ph]

    Article  ADS  Google Scholar 

  27. F. Jegerlehner, A. Nyffeler, The Muon g-2. Phys. Rept. 477, 1–110 (2009). https://doi.org/10.1016/j.physrep.2009.04.003. arXiv:0902.3360 [hep-ph]

    Article  ADS  Google Scholar 

  28. C. Kelso, H.N. Long, R. Martinez, F.S. Queiroz, Connection of \(g-2_{\mu }\), electroweak, dark matter, and collider constraints on 331 models. Phys. Rev. D 90(11), 113011 (2014). https://doi.org/10.1103/PhysRevD.90.113011. arXiv:1408.6203 [hep-ph]

    Article  ADS  Google Scholar 

  29. M. Lindner, M. Platscher, F.S. Queiroz, A call for new physics?: The muon anomalous magnetic moment and lepton flavor violation. Phys. Rept. 731, 1–82 (2018). https://doi.org/10.1016/j.physrep.2017.12.001. arXiv:1610.06587 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  30. K. Kowalska, E.M. Sessolo, Expectations for the muon g-2 in simplified models with dark matter. JHEP 09, 112 (2017). https://doi.org/10.1007/JHEP09(2017)112. arXiv:1707.00753 [hep-ph]

    Article  ADS  Google Scholar 

  31. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura, T. Teubner, \((g-2)_\mu\) and \(\alpha (M^2_Z)\) re-evaluated using new precise data. J. Phys. G38, 085003 (2011). https://doi.org/10.1088/0954-3899/38/8/085003. arXiv:1105.3149 [hep-ph]

    Article  ADS  Google Scholar 

  32. M. Davier, A. Hoecker, B. Malaescu, Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon \(g-2\) and \({\alpha (m_Z^2)}\) using newest hadronic cross-section data. Eur. Phys. J. C 77(12), 827 (2017). https://doi.org/10.1140/epjc/s10052-017-5161-6. arXiv:1706.09436 [hep-ph]

    Article  ADS  Google Scholar 

  33. RBC, Ukqcd Collaboration, T. Blum, P. A. Boyle, V. Gülpers, T. Izubuchi, L. Jin, C. Jung, A. Jüttner, C. Lehner, A. Portelli, and J. T. Tsang, Calculation of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment. Phys. Rev. Lett. 121(2), 022003 (2018). https://doi.org/10.1103/PhysRevLett.121.022003. arXiv:1801.07224 [hep-lat]

  34. A. Keshavarzi, D. Nomura, T. Teubner, Muon \(g-2\) and \(\alpha (M_Z^2)\): a new data-based analysis. Phys. Rev. D 97(11), 114025 (2018). https://doi.org/10.1103/PhysRevD.97.114025. arXiv:1802.02995 [hep-ph]

    Article  ADS  Google Scholar 

  35. T. Nomura, H. Okada, One-loop neutrino mass model without any additional symmetries. Phys. Dark Univ. 26, 100359 (2019). https://doi.org/10.1016/j.dark.2019.100359. arXiv:1808.05476 [hep-ph]

    Article  Google Scholar 

  36. T. Nomura, H. Okada, Zee-Babu type model with \(U(1)_{L_\mu - L_\tau }\) gauge symmetry. Phys. Rev. D 97(9), 095023 (2018). https://doi.org/10.1103/PhysRevD.97.095023. arXiv:1803.04795 [hep-ph]

    Article  ADS  Google Scholar 

  37. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 887, 1–166 (2020). https://doi.org/10.1016/j.physrep.2020.07.006. arXiv:2006.04822 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Sanyal, Limits on the charged Higgs parameters in the two Higgs doublet model using CMS \(\sqrt{s}=13\) TeV results. Eur. Phys. J. C 79(11), 913 (2019). https://doi.org/10.1140/epjc/s10052-019-7431-y. arXiv:1906.02520 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  39. C.M.S. Collaboration, A.M. Sirunyan et al., Search for a light charged Higgs boson in the H\(^\pm\)\(\rightarrow\) cs channel in proton-proton collisions at \(\sqrt{s} =\) 13 TeV. Phys. Rev. D 102(7), 072001 (2020). https://doi.org/10.1103/PhysRevD.102.072001. arXiv:2005.08900 [hep-ex]

    Article  ADS  Google Scholar 

  40. A. Arhrib, S. Baek, Two loop Barr-Zee type contributions to (g-2)(muon) in the MSSM. Phys. Rev. D 65, 075002 (2002). https://doi.org/10.1103/PhysRevD.65.075002. arXiv:hep-ph/0104225

    Article  ADS  Google Scholar 

  41. S. M. Barr and A. Zee, “Electric Dipole Moment of the Electron and of the Neutron,” Phys. Rev. Lett. 65 (1990) 21–24. [Erratum: Phys.Rev.Lett. 65, 2920 (1990)]https://doi.org/10.1103/PhysRevLett.65.21

  42. D. Chang, W.-Y. Keung, A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories. Phys. Rev. Lett. 82, 900–903 (1999). Phys. Rev. Lett. 82 (1999) https://doi.org/10.1103/PhysRevLett.82.900 900–903, http://arxiv.org/abs/hep-ph/9811202arXiv:hep-ph/9811202. [Erratum: Phys.Rev.Lett. 83, 3972 (1999)]

  43. J.H. Heo, W.-Y. Keung, Electron electric dipole moment induced by octet-colored scalars. Phys. Lett. B 661, 259–262 (2008). https://doi.org/10.1016/j.physletb.2008.02.021. arXiv:0801.0231 [hep-ph]

    Article  ADS  Google Scholar 

  44. J.H. Heo, About a peculiar U(1): \(Z^\prime\) discovery limit, Muon anomalous magnetic moment, Electron electric dipole moment. Phys. Rev. D 80, 033001 (2009). https://doi.org/10.1103/PhysRevD.80.033001. arXiv:0811.0298 [hep-ph]

    Article  ADS  Google Scholar 

  45. muon EDM initiative Collaboration, K. S. Khaw et al., “Search for the muon electric dipole moment using frozen-spin technique at PSI,” PoS NuFact2021 (2022) 136, https://doi.org/10.22323/1.402.0136, arXiv:2201.08729 [hep-ex]

  46. P.M. Ferreira, M. Mühlleitner, R. Santos, G. Weiglein, J. Wittbrodt, Vacuum Instabilities in the N2HDM. JHEP 09, 006 (2019). https://doi.org/10.1007/JHEP09(2019)006. arXiv:1905.10234 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  47. W.G. Hollik, G. Weiglein, J. Wittbrodt, Impact of vacuum stability constraints on the phenomenology of supersymmetric models. JHEP 03, 109 (2019). https://doi.org/10.1007/JHEP03(2019)109. arXiv:1812.04644 [hep-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. C.-A. Deledalle, L. Denis, S. Tabti, F. Tupin, “Closed-form expressions of the eigen decomposition of 2 x 2 and 3 x 3 Hermitian matrices,” research report, Université de Lyon, 2017. https://hal.archives-ouvertes.fr/hal-01501221

  49. C.M.S. Collaboration, A.M. Sirunyan et al., Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at \(\sqrt{s}=\) 8 and 13 TeV. Phys. Lett. B 793, 320–347 (2019). https://doi.org/10.1016/j.physletb.2019.03.064. arXiv:1811.08459 [hep-ex]

    Article  ADS  Google Scholar 

  50. P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, J. Wittbrodt, HiggsBounds-5: testing Higgs sectors in the LHC 13 TeV Era. Eur. Phys. J. C 80(12), 1211 (2020). https://doi.org/10.1140/epjc/s10052-020-08557-9. arXiv:2006.06007 [hep-ph]

    Article  ADS  Google Scholar 

  51. A. Abada, N. Bernal, A.E.C. Hernández, X. Marcano, G. Piazza, Gauged inverse seesaw from dark matter. Eur. Phys. J. C 81(8), 758 (2021). https://doi.org/10.1140/epjc/s10052-021-09535-5. arXiv:2107.02803 [hep-ph]

    Article  ADS  Google Scholar 

  52. A.E.C. Hernández, C. Hati, S. Kovalenko, J.W.F. Valle, C.A. Vaquera-Araujo, Scotogenic neutrino masses with gauged matter parity and gauge coupling unification. JHEP 03, 034 (2022). https://doi.org/10.1007/JHEP03(2022)034. arXiv:2109.05029 [hep-ph]

    Article  Google Scholar 

  53. C. Espinoza, E.A. Garcés, M. Mondragón, H. Reyes-González, The \(S3\) symmetric model with a dark scalar. Phys. Lett. B 788, 185–191 (2019). https://doi.org/10.1016/j.physletb.2018.11.028. arXiv:1804.01879 [hep-ph]

    Article  ADS  Google Scholar 

  54. F. Staub, “SARAH,” arXiv:0806.0538 [hep-ph]

  55. F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHep. Comput. Phys. Commun. 181, 1077–1086 (2010). https://doi.org/10.1016/j.cpc.2010.01.011. arXiv:0909.2863 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  56. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies. Comput. Phys. Commun. 182, 808–833 (2011). https://doi.org/10.1016/j.cpc.2010.11.030. arXiv:1002.0840 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  57. F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more. Comput. Phys. Commun. 184, 1792–1809 (2013). https://doi.org/10.1016/j.cpc.2013.02.019. arXiv:1207.0906 [hep-ph]

    Article  ADS  Google Scholar 

  58. F. Staub, SARAH 4: a tool for (not only SUSY) model builders. Comput. Phys. Commun. 185, 1773–1790 (2014). https://doi.org/10.1016/j.cpc.2014.02.018. arXiv:1309.7223 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  59. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs_3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). https://doi.org/10.1016/j.cpc.2013.10.016. arXiv:1305.0237 [hep-ph]

    Article  ADS  Google Scholar 

  60. G. Bélange, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). https://doi.org/10.1016/j.cpc.2015.03.003. arXiv:1407.6129 [hep-ph]

    Article  ADS  Google Scholar 

  61. D. Barducci, G. Belanger, J. Bernon, F. Boudjema, J. Da Silva, S. Kraml, U. Laa, A. Pukhov, Collider limits on new physics within micrOMEGAs_4.3. Comput. Phys. Commun. 222, 327–338 (2018). https://doi.org/10.1016/j.cpc.2017.08.028. arXiv:1606.03834 [hep-ph]arXiv:1606.03834 [hep-ph]arXiv:1606.03834 [hep-ph]arXiv:1606.03834 [hep-ph]arXiv:1606.03834 [hep-ph]

    Article  ADS  Google Scholar 

  62. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, B. Zaldivar, micrOMEGAs5.0: Freeze-in. Comput. Phys. Commun. 231, 173–186 (2018). https://doi.org/10.1016/j.cpc.2018.04.027. arXiv:1801.03509 [hep-ph]

    Article  ADS  Google Scholar 

  63. GAMBIT Collaboration, G.D. Martinez, J. McKay, B. Farmer, P. Scott, E. Roebber, A. Putze, J. Conrad, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C 77(11), 761 (2017). https://doi.org/10.1140/epjc/s10052-017-5274-y. arXiv:1705.07959 [hep-ph]

    Article  ADS  Google Scholar 

  64. E. Del Nobile, “Appendiciario—A hands-on manual on the theory of direct Dark Matter detection,” arXiv:2104.12785 [hep-ph]

  65. XENON Collaboration, E. Aprile et al., Dark matter search results from a one ton-year exposure of XENON1T. Phys. Rev. Lett. 121(11), 111302 (2018). https://doi.org/10.1103/PhysRevLett.121.111302. arXiv:1805.12562 [astro-ph.CO]

    Article  ADS  Google Scholar 

  66. GAMBIT Dark Matter Workgroup Collaboration, T. Bringmann et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. Eur. Phys. J. C 77(12), 831 (2017). https://doi.org/10.1140/epjc/s10052-017-5155-4. arXiv:1705.07920 [hep-ph]

    Article  Google Scholar 

  67. GAMBIT Collaboration, P. Athron et al., Global analyses of Higgs portal singlet dark matter models using GAMBIT. Eur. Phys. J. C 79(1), 38 (2019). https://doi.org/10.1140/epjc/s10052-018-6513-6. arXiv:1808.10465 [hep-ph]

    Article  Google Scholar 

  68. M. Schumann, L. Baudis, L. Bütikofer, A. Kish, M. Selvi, Dark matter sensitivity of multi-ton liquid xenon detectors. JCAP 10, 016 (2015). https://doi.org/10.1088/1475-7516/2015/10/016. arXiv:1506.08309 [physics.ins-det]

    Article  ADS  Google Scholar 

  69. J. Billard, L. Strigari, E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. D 89(2), 023524 (2014). https://doi.org/10.1103/PhysRevD.89.023524. arXiv:1307.5458 [hep-ph]

    Article  ADS  Google Scholar 

  70. P.-H. Gu, U. Sarkar, Leptogenesis with linear, inverse or double seesaw. Phys. Lett. B 694, 226–232 (2011). https://doi.org/10.1016/j.physletb.2010.09.062. arXiv:1007.2323 [hep-ph]

    Article  ADS  Google Scholar 

  71. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos. Phys. Rev. D 56, 5431–5451 (1997). https://doi.org/10.1103/PhysRevD.56.5431. arXiv:hep-ph/9707235 [hep-ph]

    Article  ADS  Google Scholar 

  72. M.J. Dolan, T.P. Dutka, R.R. Volkas, Dirac-phase thermal leptogenesis in the extended type-I seesaw model. JCAP 06, 012 (2018). https://doi.org/10.1088/1475-7516/2018/06/012. arXiv:1802.08373 [hep-ph]

    Article  ADS  Google Scholar 

  73. S. Blanchet, T. Hambye, F.-X. Josse-Michaux, Reconciling leptogenesis with observable \(\mu \rightarrow e \gamma\) rates. JHEP 04, 023 (2010). https://doi.org/10.1007/JHEP04(2010)023. arXiv:0912.3153 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  74. M. Maniatis, A. von Manteuffel, O. Nachtmann, F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model. Eur. Phys. J. C 48, 805–823 (2006). https://doi.org/10.1140/epjc/s10052-006-0016-6. arXiv:hep-ph/0605184

    Article  ADS  Google Scholar 

  75. G. Bhattacharyya, D. Das, Scalar sector of two-Higgs-doublet models: a minireview. Pramana 87(3), 40 (2016). https://doi.org/10.1007/s12043-016-1252-4. arXiv:1507.06424 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.E.C.H is supported by ANID-Chile FONDECYT 1210378, ANID PIA/APOYO AFB180002 and ANID- Programa Milenio - code ICN2019_044. C.E. acknowledges the support of Conacyt (México) Cátedra no. 341. This research is partially supported by DGAPA PAPIIT IN109321. A.E.C.H is very grateful to the Instituto de Física, Universidad Nacional Autónoma de México for hospitality and for financing his visit where part of this work was done. JCGI is supported by SIP IPN Project 20211423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E Cárcamo Hernández.

Appendices

Appendix A: The product rules for \(Q_{4}\)

The irreducible representations of the \(Q_{4}\) group are four singlets, \(\mathbf {1}_{+}{+}\), \(\mathbf {1}_{+-}\), \(\mathbf {1}_{-+}\) and \(\mathbf {1}_{--}\), and one doublet \(\mathbf {2}\). The tensor products of the \(Q_{4}\) irreducible representation are given by [3]:

$$\begin{aligned}&\left( \begin{array}{c} z \\ \bar{z} \end{array} \right) _{\mathbf {2}}\otimes \left( \begin{array}{c} z^{\prime } \\ \bar{z}^{\prime } \end{array} \right) _{\mathbf {2}} \nonumber \\&\quad =\left( z\bar{z}^{\prime }-\bar{z}z^{\prime }\right) _{\mathbf {1}_{++}}\oplus \left( z\bar{z}^{\prime }+\bar{z}z^{\prime }\right) _{\mathbf {1}_{--}} \nonumber \\&\quad \oplus \left( zz^{\prime }-\bar{z}\bar{z}^{\prime }\right) _{\mathbf {1} _{+-}}\oplus \left( zz^{\prime }+\bar{z}\bar{z}^{\prime }\right) _{\mathbf {1} _{-+}}, \end{aligned}$$
(89)
$$\begin{aligned}&\left( w\right) _{\mathbf {1}_{++}}\otimes \left( \begin{array}{c} z \\ \bar{z} \end{array} \right) _{\mathbf {2}}=\left( \begin{array}{c} wz \\ w\bar{z} \end{array} \right) _{\mathbf {2}},\quad \left( w\right) _{\mathbf {1}_{--}}\otimes \left( \begin{array}{c} z \\ \bar{z} \end{array} \right) _{\mathbf {2}}=\left( \begin{array}{c} wz \\ -w\bar{z} \end{array} \right) _{\mathbf {2}}, \nonumber \\&\quad \left( w\right) _{\mathbf {1}_{+-}}\otimes \left( \begin{array}{c} z \\ \bar{z} \end{array} \right) _{\mathbf {2}}=\left( \begin{array}{c} w\bar{z} \\ wz \end{array} \right) _{\mathbf {2}},\quad \left( w\right) _{\mathbf {1}_{-+}}\otimes \left( \begin{array}{c} z \\ \bar{z} \end{array} \right) _{\mathbf {2}}=\left( \begin{array}{c} w\bar{z} \\ -wz \end{array} \right) _{\mathbf {2}}, \end{aligned}$$
(90)
$$\begin{aligned} \mathbf {1}_{s_{1}s_{2}}\otimes \mathbf {1}_{s_{1}^{\prime }s_{2}^{\prime }}= \mathbf {1}_{s_{1}^{\prime \prime }s_{2}^{\prime \prime }}, \end{aligned}$$

where \(s_{1}^{\prime \prime }=s_{1}s_{1}^{\prime }\) and \(s_{2}^{\prime \prime }=s_{2}s_{2}^{\prime }\).

Appendix B: Scalar potential for two \(Q_{4}\) doublets

The scalar potential for two \(Q_{4}\) doublets \(\xi\) and \(\Phi\) (with \(\xi\) real and \(\Phi\) complex) has the form

$$\begin{aligned} V= & {} \mu _{\xi }^{2}\left( \xi \xi \right) _{\mathbf {1}_{++}}+\mu _{\Phi }^{2}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{++}}+\lambda _{1}\left( \xi \xi \right) _{\mathbf {1}_{++}}\left( \xi \xi \right) _{ \mathbf {1}_{++}}+\lambda _{2}\left( \xi \xi \right) _{\mathbf {1}_{+-}}\left( \xi \xi \right) _{\mathbf {1}_{+-}}+\lambda _{3}\left( \xi \xi \right) _{ \mathbf {1}_{-+}}\left( \xi \xi \right) _{\mathbf {1}_{-+}} \nonumber \\&+\lambda _{4}\left( \xi \xi \right) _{\mathbf {1}_{--}}\left( \xi \xi \right) _{\mathbf {1}_{--}}+\lambda _{5}\left( \Phi \Phi ^{\dagger }\right) _{ \mathbf {1}_{++}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1} _{++}}+\lambda _{6}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1} _{+-}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{+-}}+\lambda _{7}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{-+}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{-+}} \nonumber \\&+\lambda _{8}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{--}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{--}}+\lambda _{9}\left( \xi \xi \right) _{\mathbf {1}_{++}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1} _{++}}+\lambda _{10}\left( \xi \xi \right) _{\mathbf {1}_{+-}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{+-}}+\lambda _{11}\left( \xi \xi \right) _{\mathbf {1}_{-+}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1} _{-+}} \nonumber \\&+\lambda _{12}\left( \xi \xi \right) _{\mathbf {1}_{--}}\left( \Phi \Phi ^{\dagger }\right) _{\mathbf {1}_{--}} \end{aligned}$$
(91)

The above given scalar potential can be rewritten as follows:

$$\begin{aligned} V&= \mu _{\Phi }^{2}\left( \Phi _{1}\Phi _{2}^{\dagger }-\Phi _{2}\Phi _{1}^{\dagger }\right) +\lambda _{2}\left( \xi _{1}^{2}-\xi _{2}^{2}\right) ^{2}+\lambda _{3}\left( \xi _{1}^{2}+\xi _{2}^{2}\right) ^{2}+4\lambda _{4}\xi _{1}^{2}\xi _{2}^{2}+\lambda _{5}\left( \Phi _{1}\Phi _{2}^{\dagger }-\Phi _{2}\Phi _{1}^{\dagger }\right) ^{2} \nonumber \\&+\lambda _{6}\left( \Phi _{1}\Phi _{1}^{\dagger }-\Phi _{2}\Phi _{2}^{\dagger }\right) ^{2}+\lambda _{7}\left( \Phi _{1}\Phi _{1}^{\dagger }+\Phi _{2}\Phi _{2}^{\dagger }\right) ^{2}+\lambda _{8}\left( \Phi _{1}\Phi _{2}^{\dagger }+\Phi _{2}\Phi _{1}^{\dagger }\right) ^{2} \nonumber \\&+\lambda _{10}\left( \xi _{1}^{2}-\xi _{2}^{2}\right) \left( \Phi _{1}\Phi _{1}^{\dagger }-\Phi _{2}\Phi _{2}^{\dagger }\right) +\lambda _{11}\left( \xi _{1}^{2}+\xi _{2}^{2}\right) \left( \Phi _{1}\Phi _{1}^{\dagger }+\Phi _{2}\Phi _{2}^{\dagger }\right) +2\lambda _{12}\xi _{1}\xi _{2}\left( \Phi _{1}\Phi _{2}^{\dagger }+\Phi _{2}\Phi _{1}^{\dagger }\right) \end{aligned}$$
(92)

Due to Hermiticity, the parameters are reals and the minimum conditions are the following

$$\begin{aligned} 0&= v_{\xi _{1}}\left[ \lambda _{2}\left( v^{2}_{\xi _{1}}-v^{2}_{\xi _{2}} \right) +\lambda _{3}\left( v^{2}_{\xi _{1}}+v^{2}_{\xi _{2}}\right) +2 \lambda _{4}v^{2}_{\xi _{2}}+v_{\Phi _{1}}v_{\Phi _{2}}\left\{ \lambda _{10}\cos { (\alpha -\theta )}+i\lambda _{11}\sin {(\theta -\alpha )}\right\} +\lambda _{12} \frac{v_{\xi _{2}}}{2v_{\xi _{1}}}\left( v^{2}_{\Phi _{2}}-v^{2}_{\Phi _{1}} \right) \right] , \nonumber \\ 0 &= v_{\xi _{2}}\left[ -\lambda _{2}\left( v^{2}_{\xi _{1}}-v^{2}_{\xi _{2}} \right) +\lambda _{3}\left( v^{2}_{\xi _{1}}+v^{2}_{\xi _{2}}\right) +2 \lambda _{4}v^{2}_{\xi _{1}}+v_{\Phi _{1}}v_{\Phi _{2}}\left\{ -\lambda _{10}\cos { (\alpha -\theta )}+i\lambda _{11}\sin {(\theta -\alpha )}\right\} +\lambda _{12} \frac{v_{\xi _{1}}}{2v_{\xi _{2}}}\left( v^{2}_{\Phi _{2}}-v^{2}_{\Phi _{1}} \right) \right] , \nonumber \\ 0&= v_{\Phi _{1}}\left[ \frac{\mu ^{2}_{\Phi }}{2}+\lambda _{5}\left( v^{2}_{ \Phi _{1}}+v^{2}_{\Phi _{2}}\right) +2v^{2}_{\Phi _{2}}\left\{ \lambda _{6}\cos ^{2} {(\alpha -\theta )}-\lambda _{7}\sin ^{2}{(\theta -\alpha )}\right\} -\lambda _{8} \left( v^{2}_{\Phi _{2}}-v^{2}_{\Phi _{1}}\right) -\lambda _{12}v_{\xi _{1}}v_{ \xi _{2}}\right. \nonumber \\&\left. +\frac{v_{\Phi _{2}}}{2v_{\Phi _{1}}}\left\{ \lambda _{10}\left( v^{2}_{ \xi _{1}}-v^{2}_{\xi _{2}}\right) \cos {(\alpha -\theta )}+i\lambda _{11} \left( v^{2}_{\xi _{1}}+v^{2}_{\xi _{2}}\right) \sin {(\theta -\alpha )}\right\} \right] , \nonumber \\ 0&= v_{\Phi _{2}}\left[ \frac{\mu ^{2}_{\Phi }}{2}+\lambda _{5}\left( v^{2}_{ \Phi _{1}}+v^{2}_{\Phi _{2}}\right) +2v^{2}_{\Phi _{1}}\left\{ \lambda _{6}\cos ^{2} {(\alpha -\theta )}-\lambda _{7}\sin ^{2}{(\theta -\alpha )}\right\} +\lambda _{8} \left( v^{2}_{\Phi _{2}}-v^{2}_{\Phi _{1}}\right) +\lambda _{12}v_{\xi _{1}}v_{ \xi _{2}}\right. \nonumber \\&\left. +\frac{v_{\Phi _{1}}}{2v_{\Phi _{2}}}\left\{ \lambda _{10}\left( v^{2}_{ \xi _{1}}-v^{2}_{\xi _{2}}\right) \cos {(\alpha -\theta )}+i\lambda _{11} \left( v^{2}_{\xi _{1}}+v^{2}_{\xi _{2}}\right) \sin {(\theta -\alpha )}\right\} \right] . \end{aligned}$$
(93)

where we have considered in general

$$\begin{aligned} \left\langle \xi \right\rangle =\left( v_{\xi _{1} }, v_{\xi _{2} }\right) , \left\langle \Phi \right\rangle =\left( v_{\Phi _{1} } e^{i\theta },v_{\Phi _{2} }e^{i\alpha }\right) . \end{aligned}$$
(94)

According to our purpose, we need the alignment \(\left\langle \xi \right\rangle =v_{\xi }\left( 1,0\right)\) (\(v_{\xi _{1}}\ne 0\) and \(v_{\xi _{2}}=0\)), then we use the former two expressions in Eq. ((93)) to obtain

$$\begin{aligned} 0&= v_{\xi }^{2}\left( \lambda _{2}+\lambda _{3}\right) +v_{\Phi _{1}}v_{\Phi _{2}}\left\{ \lambda _{10}\cos {(\alpha -\theta )}+i\lambda _{11}\sin {(\theta -\alpha )}\right\} , \nonumber \\ 0&= v_{\Phi _{1}}\left[ \frac{\mu _{\Phi }^{2}}{2}+\lambda _{5}\left( v_{\Phi _{1}}^{2}+v_{\Phi _{2}}^{2}\right) +2v_{\Phi _{2}}^{2}\left\{ \lambda _{6}\cos ^{2}{(\alpha -\theta )}-\lambda _{7}\sin ^{2}{(\theta -\alpha )}\right\} -\lambda _{8}\left( v_{\Phi _{2}}^{2}-v_{\Phi _{1}}^{2}\right) \right. \nonumber \\&\left. +\frac{v_{\Phi _{2}}}{2v_{\Phi _{1}}}\left\{ \lambda _{10}\cos { (\alpha -\theta )}+i\lambda _{11}\sin {(\theta -\alpha )}\right\} v_{\xi }^{2}\right] , \nonumber \\ 0&= v_{\Phi _{2}}\left[ \frac{\mu _{\Phi }^{2}}{2}+\lambda _{5}\left( v_{\Phi _{1}}^{2}+v_{\Phi _{2}}^{2}\right) +2v_{\Phi _{1}}^{2}\left\{ \lambda _{6}\cos ^{2}{(\alpha -\theta )}-\lambda _{7}\sin ^{2}{(\theta -\alpha )}\right\} +\lambda _{8}\left( v_{\Phi _{2}}^{2}-v_{\Phi _{1}}^{2}\right) \right. \nonumber \\&\left. +\frac{v_{\Phi _{1}}}{2v_{\Phi _{2}}}\left\{ \lambda _{10}\cos { (\alpha -\theta )}+i\lambda _{11}\sin {(\theta -\alpha )}\right\} v_{\xi }^{2}\right] \end{aligned}$$
(95)

As one can notice, in the last to expressions in Eq. (95), there is a symmetry of interchange \(v_{\Phi _{1}}\leftrightarrow v_{\Phi _{2}}\). Along with this, we demand that \(v_{\Phi _{1}}\ne 0\ne v_{\Phi _{2}}\) therefore \(v_{\Phi _{1}}=v_{\Phi _{2}}\equiv v_{\Phi }\) from the last two expressions. Finally, we end up having

$$\begin{aligned} 0&= v_{\xi }^{2}\left( \lambda _{2}+\lambda _{3}\right) +v_{\Phi }^{2}\left\{ \lambda _{10}\cos {(\alpha -\theta )}+i\lambda _{11}\sin { (\theta -\alpha )}\right\} , \nonumber \\ 0&= \frac{\mu _{\Phi }^{2}}{2}+2v_{\Phi }^{2}\left\{ \lambda _{5}+\lambda _{6}\cos ^{2}{(\alpha -\theta )}-\lambda _{7}\sin ^{2}{(\theta -\alpha )} \right\} +\frac{v_{\xi }^{2}}{2}\left\{ \lambda _{10}\cos {(\alpha -\theta )} +i\lambda _{11}\sin {(\theta -\alpha )}\right\} . \end{aligned}$$
(96)

This shows that the VEV pattern of the two \(Q_{4}\) doublets \(\xi\) and \(\Phi\) shown in Eq. (1) is consistent with the minimization conditions of the scalar potential.

Appendix C: Stability of the scalar potential for two \(Q_{4}\) doublets

With the aim to determine the stability conditions of the scalar potential for the two \(Q_{4}\) doublets \(\xi\) and \(\Phi\), we proceed to analyze its quartic terms because they will dominate the behavior of the scalar potential in the region of very large values of the field components. To this end, we introduce the following Hermitian bilinear combination of the scalar fields:

$$\begin{aligned} a&= \Phi _{1}\Phi _{1}^{\dagger },\quad b=\Phi _{2}\Phi _{2}^{\dagger },\quad c=\Phi _{1}\Phi _{2}^{\dagger }+\Phi _{2}\Phi _{1}^{\dagger },\quad d=i\left( \Phi _{1}\Phi _{2}^{\dagger }-\Phi _{2}\Phi _{1}^{\dagger }\right) , \nonumber \\ e&= \xi _{1}^{2},\quad f=\xi _{2}^{2} \end{aligned}$$
(97)

and rewrite the quartic terms of the scalar potential for the two \(Q_{4}\) doublets \(\xi\) and \(\Phi\):

$$\begin{aligned} V_{4}&= \lambda _{2}\left( \xi _{1}^{2}-\xi _{2}^{2}\right) ^{2}+\lambda _{3}\left( \xi _{1}^{2}+\xi _{2}^{2}\right) ^{2}+4\lambda _{4}\xi _{1}^{2}\xi _{2}^{2}+\lambda _{5}\left( \Phi _{1}\Phi _{2}^{\dagger }-\Phi _{2}\Phi _{1}^{\dagger }\right) ^{2}+\lambda _{6}\left( \Phi _{1}\Phi _{1}^{\dagger }-\Phi _{2}\Phi _{2}^{\dagger }\right) ^{2} \nonumber \\&+\lambda _{7}\left( \Phi _{1}\Phi _{1}^{\dagger }+\Phi _{2}\Phi _{2}^{\dagger }\right) ^{2}+\lambda _{8}\left( \Phi _{1}\Phi _{2}^{\dagger }+\Phi _{2}\Phi _{1}^{\dagger }\right) ^{2}+\lambda _{10}\left( \xi _{1}^{2}-\xi _{2}^{2}\right) \left( \Phi _{1}\Phi _{1}^{\dagger }-\Phi _{2}\Phi _{2}^{\dagger }\right) \nonumber \\&+\lambda _{11}\left( \xi _{1}^{2}+\xi _{2}^{2}\right) \left( \Phi _{1}\Phi _{1}^{\dagger }+\Phi _{2}\Phi _{2}^{\dagger }\right) +2\lambda _{12}\xi _{1}\xi _{2}\left( \Phi _{1}\Phi _{2}^{\dagger }+\Phi _{2}\Phi _{1}^{\dagger }\right) \end{aligned}$$
(98)

in the following form:

$$\begin{aligned} V_{4}&= \left( \lambda _{2}+\lambda _{3}\right) \left( e^{2}+f^{2}\right) +2\left( \lambda _{3}-\lambda _{2}+2\lambda _{4}\right) ef-\lambda _{5}d^{2}+\left( \lambda _{6}+\lambda _{7}\right) \left( a^{2}+b^{2}\right) +2\left( \lambda _{7}-\lambda _{6}\right) ab \nonumber \\&+\lambda _{8}c^{2}+\lambda _{10}\left( e-f\right) \left( a-b\right) +\lambda _{11}\left( e+f\right) \left( a+b\right) +2\lambda _{12}\sqrt{ef}c \end{aligned}$$
(99)

Defining

$$\begin{aligned} \kappa _{1}=\lambda _{2}+\lambda _{3},\quad \kappa _{2}=2\left( \lambda _{3}-\lambda _{2}+2\lambda _{4}\right) ,\quad \kappa _{3}=\lambda _{6}+\lambda _{7},\quad \kappa _{4}=2\left( \lambda _{7}-\lambda _{6}\right) , \end{aligned}$$
(100)

The above given quartic scalar interactions can be rewritten as follows:

$$\begin{aligned} V_{4}&= \kappa _{1}\left( e^{2}+f^{2}\right) +\kappa _{2}ef-\lambda _{5}d^{2}+\kappa _{3}\left( a^{2}+b^{2}\right) +\kappa _{4}ab+\lambda _{8}c^{2} \nonumber \\&+\lambda _{10}\left( e-f\right) \left( a-b\right) +\lambda _{11}\left( e+f\right) \left( a+b\right) +2\lambda _{12}\sqrt{ef}c \nonumber \\& = \frac{\kappa _{1}}{2}\left[ \left( e-f\right) ^{2}+\left( e+f\right) ^{2} \right] +\frac{\kappa _{3}}{2}\left[ \left( a-b\right) ^{2}+\left( a+b\right) ^{2}\right] \nonumber \\&+\kappa _{2}ef-\lambda _{5}d^{2}+\kappa _{4}ab \nonumber \\&+\lambda _{8}c^{2}+\lambda _{10}\left( e-f\right) \left( a-b\right) +\lambda _{11}\left( e+f\right) \left( a+b\right) +2\lambda _{12}\sqrt{ef}c \nonumber \\&= \left[ \sqrt{\frac{\kappa _{1}}{2}}\left( e-f\right) +\sqrt{\frac{\kappa _{3}}{2}}\left( a-b\right) \right] ^{2}+\left[ \sqrt{\frac{\kappa _{1}}{2}} \left( e+f\right) +\sqrt{\frac{\kappa _{3}}{2}}\left( a+b\right) \right] ^{2} \nonumber \\&+\left( \lambda _{10}-\sqrt{\kappa _{1}\kappa _{3}}\right) \left( e-f\right) \left( a-b\right) +\left( \lambda _{11}-\sqrt{\kappa _{1}\kappa _{3}}\right) \left( e+f\right) \left( a+b\right) \nonumber \\&-\lambda _{5}d^{2}+\kappa _{4}ab+\left[ \sqrt{\kappa _{2}}\sqrt{ef}+\sqrt{ \lambda _{8}}c\right] ^{2}+2\left( \lambda _{12}-\sqrt{\kappa _{2}\lambda _{8}}\right) \sqrt{ef}c \end{aligned}$$
(101)

Following the procedure used for analyzing the stability described in Refs. [74, 75], we find that our scalar potential of two \(Q_{4}\) doublets will be stable when the following conditions are fulfilled:

$$\begin{aligned} \lambda _{2}+\lambda _{3}\ge & {} 0,\quad \lambda _{6}+\lambda _{7}\ge 0,\quad \lambda _{10}-\sqrt{\left( \lambda _{2}+\lambda _{3}\right) \left( \lambda _{6}+\lambda _{7}\right) }\ge 0,\quad \lambda _{11}-\sqrt{\left( \lambda _{2}+\lambda _{3}\right) \left( \lambda _{6}+\lambda _{7}\right) }\ge 0, \quad \lambda _{5}\le 0, \nonumber \\ \lambda _{7}\ge & {} \lambda _{6},\quad \lambda _{8}\ge 0,\quad \lambda _{3}-\lambda _{2}+2\lambda _{4}\ge 0,\quad \lambda _{12}\ge \sqrt{2\left( \lambda _{3}-\lambda _{2}+2\lambda _{4}\right) \lambda _{8}}. \end{aligned}$$
(102)

Appendix D: Analytical expressions for the entries of the CKM matrix

Explicitly, the CKM entries are given as

$$\begin{aligned} (\mathbf {V}_{CKM})_{ud}= & {} -\frac{\vert m_{u}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{u}\vert ^{2} \mathcal {N}_{2}\mathcal {N}_{3} \mathcal {M}_{2}}{\mathcal {D}_{1}}}~\cos {\theta _{d}}+ \sqrt{\frac{\mathcal {N}_{1} \mathcal {M}_{1}\mathcal {M}_{3}}{\mathcal {D}_{1}} }~\sin {\theta _{d}}~e^{-i\bar{\eta }_{c}},\nonumber \\ (\mathbf {V}_{CKM})_{us}= & {} -\left[ \frac{\vert m_{u}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{u}\vert ^{2} \mathcal {N}_{2}\mathcal {N}_{3} \mathcal {M}_{2}}{\mathcal {D}_{1}}}~\sin {\theta _{d}}+\sqrt{\frac{\mathcal {N}_{1} \mathcal {M}_{1}\mathcal {M}_{3}}{\mathcal {D}_{1}} }~\cos {\theta _{d}}~e^{-i\bar{\eta }_{c}}\right] ,\nonumber \\ (\mathbf {V}_{CKM})_{ub}= & {} \frac{1}{\vert a_{u}\vert }\sqrt{\frac{\mathcal {N}_{1} \mathcal {M}_{2} \mathcal {K}}{\mathcal {D}_{1}}}~e^{-i\eta _{t}},\nonumber \\ (\mathbf {V}_{CKM})_{cd}= & {} -\left[ \frac{ \vert m_{c}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{c}\vert ^{2}\mathcal {N }_{1}\mathcal {N}_{3} \mathcal {M}_{1}}{\mathcal {D}_{2}}}~\cos {\theta _{d}}+\sqrt{\frac{ \mathcal {N}_{2} \mathcal {M}_{2}\mathcal {M}_{3}}{\mathcal {D} _{2}}}~\sin {\theta _{d}}~e^{-i\bar{\eta }_{c}}\right] ,\nonumber \\ (\mathbf {V}_{CKM})_{cs}= & {} \frac{ \vert m_{c}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{c}\vert ^{2}\mathcal {N }_{1}\mathcal {N}_{3} \mathcal {M}_{1}}{\mathcal {D}_{2}}}~\sin {\theta _{d}}+\sqrt{\frac{ \mathcal {N}_{2} \mathcal {M}_{2}\mathcal {M}_{3}}{\mathcal {D} _{2}}}~\cos {\theta _{d}}~e^{-i\bar{\eta }_{c}},\nonumber \\ (\mathbf {V}_{CKM})_{cb}= & {} -\frac{1}{\vert a_{u}\vert }\sqrt{\frac{\mathcal {N}_{2} \mathcal {M}_{1} \mathcal {K}}{\mathcal {D}_{2}}}~e^{-i\eta _{t}},\nonumber \\ (\mathbf {V}_{CKM})_{td}= & {} \frac{\vert m_{t}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{t}\vert ^{2}\mathcal {N}_{1} \mathcal {N}_{2} \mathcal {M}_{3}}{\mathcal {D}_{3}}}~\cos {\theta _{d}}-\sqrt{\frac{ \mathcal {N}_{3} \mathcal {M}_{1}\mathcal {M}_{2}}{ \mathcal {D}_{3}}}~\sin {\theta _{d}}~e^{-i\bar{\eta }_{c}},\nonumber \\ (\mathbf {V}_{CKM})_{ts}= & {} \frac{\vert m_{t}\vert }{\vert a_{u}\vert }\sqrt{\frac{\vert m_{t}\vert ^{2}\mathcal {N}_{1} \mathcal {N}_{2} \mathcal {M}_{3}}{\mathcal {D}_{3}}}~\sin {\theta _{d}}-\sqrt{\frac{ \mathcal {N}_{3} \mathcal {M}_{1}\mathcal {M}_{2}}{ \mathcal {D}_{3}}}~\cos {\theta _{d}}~e^{-i\bar{\eta }_{c}},\nonumber \\ (\mathbf {V}_{CKM})_{tb}= & {} \frac{1}{\vert a_{u}\vert }\sqrt{\frac{\mathcal {N}_{2} \mathcal {M}_{3} \mathcal {K}}{\mathcal {D}_{3}}}~e^{-i\eta _{t}}. \end{aligned}$$
(103)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárcamo Hernández, A.E., Espinoza, C., Gómez-Izquierdo, J.C. et al. Fermion masses and mixings, dark matter, leptogenesis and \(g-2\) muon anomaly in an extended 2HDM with inverse seesaw. Eur. Phys. J. Plus 137, 1224 (2022). https://doi.org/10.1140/epjp/s13360-022-03432-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03432-w

Navigation