Skip to main content
Log in

Intramolecular Noncovalent Interactions in Bis-Imidazolium Dications with Short Aliphatic Spacers

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Stretched all-trans conformations were found preferable in computed structures of bis-imidazolium dications with short aliphatic (С1–С4) and hydroxyl substituted –СН2–СНОН–СН2– bridges. The molecular electrostatic potential is distributed unevenly in the dications: maxima of molecular electrostatic potential are located near С2Н imidazolium and bridge hydrogens for the α,ω-alkenyl bridges, and close to hydroxyl hydrogen for the hydroxypropane bridge. Intramolecular hydrogen bonds С–Н···ОН contribute to a significantly higher rotational barrier around С1–C2 bond in dications with a hydroxypropane bridge compared with polymethylene bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Albrecht, M., Miecznikowski, J.R., Samuel, A., Faller, J.W., and Crabtree, R.H., Organometallics, 2002, vol. 21, p. 3596. https://doi.org/10.1021/om020338x

    Article  CAS  Google Scholar 

  2. Okuyama, K., Sugiyama, J., Nagahata, R., Asai, M., Ueda, M., and Takeuchi, K., J. Mol. Catal. A, 2003, vol. 203, nos. 1–2, p. 21. https://doi.org/10.1016/S1381-1169(03)00281-4

    Article  CAS  Google Scholar 

  3. Mata, J.A., Chianese, A.R., Miecznikowski, J.R., Poyatos, M., Peris, E., Faller, J.W., and Crabtree, R.H., Organometallics, 2004, vol. 23, p. 1253. https://doi.org/10.1021/om034240+

    Article  CAS  Google Scholar 

  4. Lee, H.M., Lu, C.Y., Chen, C.Y., Chen, W.L., Lin, H.C., Chiu, P.L., and Cheng, P.Y., Tetrahedron, 2004, vol. 60, no. 27, p. 5807. https://doi.org/10.1016/j.tet.2004.04.070

    Article  CAS  Google Scholar 

  5. Jin, C.-M., Twamley, B., and Shreeve, J.M., Organometallics, 2005, vol. 24, no. 12., p. 3020. https://doi.org/10.1021/om050210q

    Article  CAS  Google Scholar 

  6. Ahrens, S., Zeller, A., Taige, M., and Strassner, T., Organometallics, 2006, vol. 25, no. 22, p. 5409. https://doi.org/10.1021/om060577a

    Article  CAS  Google Scholar 

  7. Scherg, T., Schneider, S.K., Frey, G.D., Schwarz, J., Herdtweck, E., and Herrmann, W.A., Synlett., 2006, vol. 18, p. 2894. https://doi.org/10.1055/s-2006-951539

    Article  CAS  Google Scholar 

  8. Cebollada, A., Vellé, A., Sanz, and Miguel, P.J., Acta Crystallogr., 2016, vol. 72, p. 456. https://doi.org/10.1107/S2053229616006781

    Article  CAS  Google Scholar 

  9. Wang, C., Liu, J., Tian, Z., Tian, M., Tian, L., Zhao, W., and Liu, Z., Dalton Trans., 2017, vol. 46, p. 6870. https://doi.org/10.1039/C7DT00575J

    Article  CAS  PubMed  Google Scholar 

  10. Charra, V., Frémont, P., and Braunstein, P., Coord. Chem. Rev., 2017, vol. 341, p. 53. https://doi.org/10.1016/j.ccr.2017.03.007

    Article  CAS  Google Scholar 

  11. Zhao, Q., Meng, G., Nolan, S.P., and Szostak, M., Chem. Rev., 2020, vol. 120, p. 1981. https://doi.org/10.1021/acs.chemrev.9b00634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Claramunt, R.M., Elguero, J., and Meco, T., J. Heterocycl. Chem., 1983, vol. 20, p. 1245. https://doi.org/10.1002/jhet.5570200519

    Article  CAS  Google Scholar 

  13. Bhadani, A., Misono, T., Singh, S., Sakai, K., Sakai, H., and Abe, M., Adv. Coll. Interface Sci., 2016, vol. 231, p. 36. https://doi.org/10.1016/j.cis.2016.03.005

    Article  CAS  Google Scholar 

  14. Kushnazarova, R.A., Mirgorodskaya, A.B., Mikhailov, V.A., Belousova, I.A., Zubareva, T.M., Prokop’eva, T.M., Voloshina, A.D., Amerhanova, S.K., and Zakharova, L.Ya., Russ. J. Gen. Chem., 2022, vol. 92, p. 659. https://doi.org/10.1134/S1070363222040077

    Article  CAS  Google Scholar 

  15. El Seoud, O.A., Keppeler, N., Malek, N.I., and Galgano, P.D., Polymers, 2021, vol. 13, p. 1100. https://doi.org/10.3390/polym13071100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Buettner, C.S., Cognigni, A., Schröder, C., and Bica Schröder, K., J. Mol. Liq., 2022, vol. 347, art. 118160. https://doi.org/10.1016/j.molliq.2021.11816

  17. Voloshina, A.D., Gumerova, S.K., Sapunova, А.S., Kulik, N.V., Mirgorodskaya, A.B., Kotenko, A.A., Prokopyeva, T.M., Mikhailov, V.A., Zakharova, L.Ya., and Sinyashin, O.G., BBA Gen. Sub., 2020, vol. 1864, art. 129728. https://doi.org/10.1016/j.bbagen.2020.129728

  18. Guglielmero, L., Mezzetta, A., Guazzelli, L., Pomelli, C.S., D’Andrea, F., and Chiappe, C., Front. Chem., 2018, vol. 6, art. 612. https://doi.org/10.3389/fchem.2018.00612

  19. Yang, M., Stappert, K., and Mudring, A.-V., J. Mater. Chem., 2014, vol. 2, p. 458. https://doi.org/10.1039/C3TC31368A

    Article  CAS  Google Scholar 

  20. Lee, M., Choi, U.H., Wi, S., Slebodnick, C., Colby, R.H., and Gibson, H.W., J. Mater. Chem., 2011, vol. 21, p. 12280. https://doi.org/10.1039/C1JM10995B

    Article  CAS  Google Scholar 

  21. Chae, H., Lee, Y.-H., Yang, M., Yoon, W.-J., Yoon, D.K., Jeong, K.-U., Song, Y.H., Choi, U.H., and Lee, M., RSC Adv., 2019, vol. 9, p. 3972. https://doi.org/10.1039/C8RA09208G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammond, O.S., and Mudring, A.-V., Chem. Commun., 2022, vol. 58, p. 3865. https://doi.org/10.1039/d1cc06543b

    Article  CAS  Google Scholar 

  23. Goossens, K., Lava, K., Bielawski, C.W., and Binnemans, K., Chem. Rev., 2016, vol. 116, p. 4643. https://doi.org/10.1021/cr400334b

    Article  CAS  PubMed  Google Scholar 

  24. Kapernaum, N., Lange, A., Ebert, M., Grunwald, M.A., Haege, C., Marino, S., Zens, A., Taubert, A., Giesselmann, F., and Laschat, S., ChemPlusChem., 2022, vol. 87, art. e202100397. https://doi.org/10.1002/cplu.202100397

  25. Sirigiri, N., Chen, F., Forsyth, C.M., Yunis, R., O’Dell, L., Pringle, J.M., and Forsyth, M., Mater. Today Phys., 2022, vol. 22. Art. 100603. https://doi.org/10.1016/j.mtphys.2022.100603

  26. Prokop’eva, T.M., Mirgorodskaya, A.B., Belousova, I.A., Zubareva, T.M., Turovskaya, M.K., Razumova, N.G., Gaidash, T.S., and Mikhailov, V.A., Chem. Safety, 2021, vol. 5, p. 8. https://doi.org/10.25514/CHS.2021.2.20001

    Article  Google Scholar 

  27. Pandolfi, F., Bortolami, M., Feroci, M., Fornari, A., Scarano, V., and Rocco, D., Materials, 2022, vol. 15, art. 866. https://doi.org/10.3390/ma15030866

  28. Lee, M., Lee, Y.-H., Park, J.H., and Choi, U.H., Org. Electronics, 2017, vol. 48, p. 241. https://doi.org/10.1016/j.orgel.2017.06.004

    Article  CAS  Google Scholar 

  29. Ray, A., and Saruhan, B., Materials, 2021, vol. 14, art. 2942. https://doi.org/10.3390/ma14112942

  30. Kim, E., Han, J., Ryu, S., Choi, Y., and Yoo, J., Materials, 2021, vol. 14, art. 4000. https://doi.org/10.3390/ma14144000

  31. Zhou, W., Zhang, M., Kong, X., Huang, W., and Zhang, Q., Adv. Sci., 2021, vol. 8, art. 2004490. https://doi.org/10.1002/advs.202004490

  32. Hayes, R., Warr, G.G., and Atkin, R., Chem. Rev., 2015, vol. 115, p. 6357. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  33. Philippi, F., and Welton, T., Phys. Chem. Chem. Phys., 2021, vol. 23, p. 6993 https://doi.org/10.1039/D1CP00216C

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y.-L., Li, B., Sarman, S., Mocci, F., Lu, Z.-Y., Yuan, J., Laaksonen, A., and Fayer, M.D., Chem. Rev., 2020, vol. 120, p. 5798. https://doi.org/10.1021/acs.chemrev.9b00693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandai, T., Masu, H., Seki, H., and Nishikawa, K., Bull. Chem. Soc. Japan., 2012, vol. 85, p. 599. https://doi.org/10.1246/bcsj.20120018

    Article  CAS  Google Scholar 

  36. Tadesse, H., Blake, A.J., Champness, N.R., Warren, J.E., Rizkallah, P.J., and Licence, P., CrystEngComm., 2012, vol. 14, p. 4886. https://doi.org/10.1039/c2ce25106j

    Article  CAS  Google Scholar 

  37. Huang, R.T.W., Rondla, R., Wang, W.-J., and Lin, I.J.B., J. Mol. Liq., 2017, vol. 242, p. 1285. https://doi.org/10.1016/j.molliq.2017.07.088

    Article  CAS  Google Scholar 

  38. Majhi, D., and Dvinskikh, S.V., Sci. Rep., 2021, vol. 11, art. 5985. https://doi.org/10.1038/s41598-021-85021-y

  39. Serva, A., Migliorati, V., Lapi, A., Aquilanti, G., Arcovito, A., and D’Angelo, P., Phys. Chem. Chem. Phys., 2016, vol. 18, p. 16544. https://doi.org/10.1039/c6cp01557c

    Article  CAS  PubMed  Google Scholar 

  40. Mo, Y., WIREs Comp. Mol. Sci., 2011, vol. 1, p. 164. https://doi.org/10.1002/wcms.22

    Article  CAS  Google Scholar 

  41. Kirschner, K.N., Heiden, W., and Reith, D., ACS Omega, 2018, vol. 3, p. 419. https://doi.org/10.1021/acsomega.7b01367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gougoula, E., Medcraft, C., Heitkämper, J., and Walker, N.R., J. Chem. Phys., 2019, vol. 151, art. 144301. https://doi.org/10.1063/1.5119997

  43. Leclercq, L. and Schmitzer, A.R., Cryst. Growth Des., 2011, vol. 11, p. 3828. https://doi.org/10.1021/cg200381f

    Article  CAS  Google Scholar 

  44. Zabolotniy, A.A., Trush, E.N., Zarechnaya, O.M., and Mikhailov, V.A., J. Ionic Liq., 2022, vol. 2. Art. 100045. https://doi.org/10.1016/j.jil.2022.100045

  45. Nazarski, R.B., Tetrahedron Lett., 2021, vol. 71, art. 152548. https://doi.org/10.1016/j.tetlet.2020.152548

  46. Sun, H., Zhang, D., Liu, C., and Zhang, C., J. Mol. Struct. THEOCHEM., 2009, vol. 900, p. 37. https://doi.org/10.1016/j.theochem.2008.12.024

    Article  CAS  Google Scholar 

  47. Zarechnaya, O.M., Grebenyuk, S.A., Khilko, S.L., and Mikhailov, V.A., Struktura i dinamika molekulyarnykh sistem (Structure and Dynamics of Molecular Systems), Moscow: IFKHE RAN, 2017, no. XXIV, p. 111.

  48. Martins, F.A., Zeoly, L.A., Cormanich, R.A., and Freitas, M.P., Tetrahedron, 2018, vol. 74, p. 880. https://doi.org/10.1016/j.tet.2018.01.008

    Article  CAS  Google Scholar 

  49. Allen, F.H., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., Int. Tables Cryst., 2006, vol. C, p. 790. https://doi.org/10.1107/97809553602060000621

  50. Bent, H.A., Chem. Rev., 1968, vol. 68, p. 587. https://doi.org/10.1021/cr60255a003

    Article  CAS  Google Scholar 

  51. Zefirov, Yu.V. and Zorkii, P.M., Russ.Chem. Rev., 2007, vol. 64, p. 415. https://doi.org/10.1070/RC1995v064n05ABEH000157

    Article  Google Scholar 

  52. Rowland, R.S. and Taylor, R., J. Phys. Chem., 1996, vol. 100, p. 7384 https://doi.org/10.1021/jp953141+

    Article  CAS  Google Scholar 

  53. Liu, J., Wei, X., Wei, Z., Liu, J., and Zheng, L., Acta Crystallogr. E, 2009, vol. 65, p. o2027. https://doi.org/10.1107/S1600536809028967

  54. Chen, Y., Song, W., Xu, J., Cui, R., and Tian, D., Acta Crystallogr. E, 2009, vol. 65, p. o2454. https://doi.org/10.1107/S1600536809036009

  55. Matta, C.F., Hernández-Trujillo, J., Tang, T.-H., and Bader, R.F.W., Chemistry, 2003, vol. 9, p. 1940. https://doi.org/10.1002/chem.200204626

    Article  CAS  PubMed  Google Scholar 

  56. Della Porta, P., Zanasi, R., and Monaco, G., J. Comput. Chem., 2015, vol. 36, p. 707. https://doi.org/10.1002/jcc.23841

    Article  CAS  PubMed  Google Scholar 

  57. Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., and Yang, W., J. Am. Chem. Soc., 2010, vol. 132, p. 64. https://doi.org/10.1021/ja100936w

    Article  CAS  Google Scholar 

  58. Boto, R.A., Piquemal, J.P., and Contreras-García, J., Theor. Chem. Acc., 2017, vol. 36, p. 139. https://doi.org/10.1007/s00214-017-2169-9

    Article  CAS  Google Scholar 

  59. Koch, U. and Popelier, P., J. Phys. Chem., 1995, vol. 99, p. 9747. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  60. Espinosa, E., Molins, E., and Lecomte, C., Chem. Phys. Lett., 1998, vol. 285, p. 170. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  61. Emamian, S., Lu, T., Kruse, H., and Emamian, H., J. Comput. Chem., 2019, vol. 40, p. 2868. https://doi.org/10.1002/jcc.26068

    Article  CAS  PubMed  Google Scholar 

  62. Mata, I., Alkorta, I., Espinosa, E., and Molins, E., Chem. Phys. Lett., 2011, vol. 507, p. 185. https://doi.org/10.1016/j.cplett.2011.03.055

    Article  CAS  Google Scholar 

  63. Wang, L., Liu, J., Huo, S., Deng, Q., Yan, T., Ding, L., Zhang, C., Meng, L., and Lu, Q., J. Surf. Deterg., 2014, vol. 17, p. 1107. https://doi.org/10.1007/s11743-014-1615-0

    Article  CAS  Google Scholar 

  64. Shaheen, A., Mir, A.W., Arif, R., and Wani, A.L., Coll. Interf. Sci. Commun., 2020, vol. 36. art. 100257. https://doi.org/10.1016/j.colcom.2020.100257

  65. Douthwaite, R.E., Green, M.L.H., Silcock, P.J., and Gomes, P.T., Organometallics, 2001, vol. 20, p. 2611. https://doi.org/10.1021/om010139y

    Article  CAS  Google Scholar 

  66. Ofele, K., Herrmann, W. A., Mihalios, D., Elison, M., Herdtweck, E., Priermeier, T., and Kiprof, P., J. Organometal. Chem., 1995, vol. 498, p. 1. https://doi.org/10.1016/0022-328X(94)05261-9

    Article  Google Scholar 

  67. Wang, Y., Yang, X., Zhang, Z., Hu, X., Meng, Y., Wang, X., Zhou, D., Liu, H., Li, B., and Wang, G., eScience, 2022. https://doi.org/10.1016/j.esci.2022.10.003

  68. Zarechnaya, O.M. and Mikhailov, V.A., Vestn. DonNU, Ser. A, 2021, p. 35.

  69. Neese, F., Wennmohs, F., Becker, U., and Riplinger, C., J. Chem. Phys., 2020, vol. 152, art. 224108. https://doi.org/10.1063/5.0004608

  70. Chai, J.-D. and Head-Gordon, M., J. Chem. Phys., 2008, vol. 128, art. 084106. https://doi.org/10.1063/1.2834918

  71. Weigend, F. and Ahlrichs, R., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3297. https://doi.org/10.1039/B508541A

    Article  CAS  PubMed  Google Scholar 

  72. Weigend, F., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 1057. https://doi.org/10.1039/B515623H

    Article  CAS  PubMed  Google Scholar 

  73. Neese, F., J. Comput. Chem., 2003, vol. 24, p. 1740. https://doi.org/10.1002/jcc.10318

    Article  CAS  PubMed  Google Scholar 

  74. Barone, V. and Cossi, M., J. Phys. Chem. A, 1998, vol. 102. P.1995. https://doi.org/10.1021/jp9716997

  75. York, D.M. and Karplus, M., J. Phys. Chem. A, 1999, vol 103, p. 11060. https://doi.org/10.1021/jp992097l

  76. Garcia-Ratés, M. and Neese, F., J. Comput. Chem., 2020, vol. 41, p. 922. https://doi.org/10.1002/jcc.26139

    Article  CAS  PubMed  Google Scholar 

  77. Mardirossian, N. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 9904. https://doi.org/10.1039/C3CP54374A

    Article  CAS  PubMed  Google Scholar 

  78. Vydrov, O.A. and Van Voorhis, T., J. Chem. Phys., 2010, vol. 133, art. 244103. https://doi.org/10.1063/1.3521275

  79. Goerigk, L., Hansen, A., Bauer, C., Ehrlich, S., Najibi, A., and Grimme, S., Phys. Chem. Chem. Phys., 2017, vol. 19, p. 32184. https://doi.org/10.1039/C7CP04913G

    Article  CAS  PubMed  Google Scholar 

  80. Neese, F., Wennmohs, F., Hansen, A., and Becker, U., Chem. Phys., 2009, vol. 356, p. 98. https://doi.org/10.1016/j.chemphys.2008.10.036

    Article  CAS  Google Scholar 

  81. Izsák, R. and Neese, F., J. Chem. Phys., 2011, vol. 135, art. 144105. https://doi.org/10.1063/1.3646921

  82. Ditchfield, R., Mol. Phys., 1974, vol. 27, p. 789. https://doi.org/10.1080/00268977400100711

    Article  CAS  Google Scholar 

  83. Wolinski, K., Hinton, J.F., and Pulay, P., J. Am. Chem. Soc., 1990, vol 112, p. 8251. https://doi.org/10.1021/ja00179a005

  84. Jensen, F.J., Chem. Theory Comput., 2015, vol. 11, p. 132. https://doi.org/10.1021/ct5009526

    Article  CAS  Google Scholar 

  85. Lu, T. and Chen, F., J. Comput. Chem., 2012, vol. 33, p. 580. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, J. and Lu, T., Phys. Chem. Chem. Phys., 2021, vol. 23, p. 20323. https://doi.org/10.1039/D1CP02805G

    Article  CAS  PubMed  Google Scholar 

  87. Bader, R.F.W., Atoms in Molecules: A Quantum Theory, Oxford: Clarendon Press, 1990.

  88. Johnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., and Yang, W., J. Am. Chem. Soc., 2010, vol. 132, p. 6498. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. http://www.jmol.org/

  90. Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graphics, 1996, vol. 14, p. 33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mikhailov.

Ethics declarations

The authors declare that there is no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarechnaya, O.M., Mikhailov, V.A. Intramolecular Noncovalent Interactions in Bis-Imidazolium Dications with Short Aliphatic Spacers. Russ J Gen Chem 93, 1327–1343 (2023). https://doi.org/10.1134/S1070363223060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363223060038

Keywords:

Navigation