Skip to main content
Log in

Comparative Complete Chloroplast Genome Analyses and Contribution to the Understanding of Chloroplast Phylogeny and Adaptive Evolution in Subgenus Anguinum

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen disjunctly distributes in the high mountains from south-western Europe to eastern Asia and in northeastern North America. Due to interspecies hybridization, introgression and incomplete lineage sorting, the detection of interspecies differences within Anguinum is notoriously challenging. Here we report the complete chloroplast (cp) genome sequences of A. nanodes Airy-Shaw, A. ovalifolium Hand.-Mazz., A. ovalifolium var. leuconeurum J.M. Xu and A. victorialis L. from Anguinum and A. cyathophorum Bur. & Franch from subgenus Cyathophora (R.M. Fritsch) R.M. Fritsch as outgroup, four of which were first reported. We compared them with cp genomes of A. cepa L., A. obliquum L., A. prattii C.H. Wright. The Anguinum cp genomes ranged from 153,674 to 155,055 bp in length. Each cp genome contained 131 unigenes, consisting of 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The eight Allium L. cp genomes exhibited significant differences at the SC/IR junction regions. Fourteen cpDNA markers with most variable sites were identified as mutational hotspots, and simple sequence repeats (SSRs) and long repeats were also identified. Three single-copy genes (accD, rps14, rpl33) may be under a great selection pressure indicated by positive selection analysis. The plastome-based phylogeny indicated a monophyletic position of the subgenus Anguinum, which was consistent with previous phylogenetic studies. Overall, the availability of these complete cp genomes provides valuable information for further studies of population genetics and investigation of the evolution in the genus Allium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Seregin, A.P., Anačkov, G., and Friesen, N., Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): geographical isolation as the driving force of underestimated speciation, Bot. J. Linn. Soc., 2015, vol. 178, pp. 67—101.

    Article  Google Scholar 

  2. Li, Q.Q., Zhou, S.D., Huang, D.Q., et al., Molecular phylogeny, divergence time estimates and historical biogeography within one of the world’s largest monocot genera, AoB Plants, 2016, vol. 8. plw041.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fay, M.F. and Chase, M.W., Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae, Taxon, 1996, vol. 45, pp. 441—451.

    Article  Google Scholar 

  4. APG III, An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III, Bot. J. Linn. Soc., 2009, vol. 161, pp. 105—121.

  5. Chase, M.V., Reveal, J.L., and Fay, M.F., A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae, Bot. J. Linn. Soc., 2009, vol.161, pp. 132—136.

    Article  Google Scholar 

  6. Fritsch, R.M., Taxonomy of the genus Allium: contribution from IPK Gatersleben, Herbertia, 2001, vol. 56, pp. 19—50.

    Google Scholar 

  7. Fritsch, R.M. and Friesen, N., Evolution, Domestication and Taxonomy, Allium Crop Science: Recent Advances, New York: CAB International, 2002, pp. 5—30.

    Google Scholar 

  8. Friesen, N., Fritsch, R.M., and Blattner, F.R., Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences, Aliso: J. Syst. Evol. Bot., 2006, vol. 22, pp. 372—395.

    Article  Google Scholar 

  9. Li, Q.Q., Zhou, S.D., He, X.J., et al., Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China, Ann. Bot., 2010, vol. 106, pp. 709—733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi, H.J., Giussani, L.M., Jang, C.G., et al., Systematics of disjunct northeastern Asian and northern North American Allium (Amaryllidaceae), Botany, 2012, vol. 90, pp. 491—508.

    Article  CAS  Google Scholar 

  11. Dahal, S., Sharma, T.P., and Borthakur, S.K., Database on medicinal plants of Tamze Medicinal Plants Conservation Area (MPCA) of Sikkim Himalaya, India, NeBIO—Int. J. Environ. Biodiversity, 2017, vol. 8, pp. 45—56.

    Google Scholar 

  12. Pastor, J. and Valdes, B., Bulb structure in some species of Allium (Liliaceae) of Iberian Peninsula, Ann. Mus. Goulandris., 1985, vol. 7, pp. 249—261.

    Google Scholar 

  13. Kruse, J., Rasterelektronenmikroskopische Untersuchungen an Samen der Gattung Allium L.: 4, Feddes Repertorium, 1994, vol. 105, pp. 457—471.

    Article  Google Scholar 

  14. Fritsch, R.M., Zur Wurzelanatomie in der Gattung Allium L. (Alliaceae), Beitr. Biol. Pflanz., 1992, vol. 67, pp. 129—160.

    Google Scholar 

  15. Druselmann, S., Vergleichende Untersuchungen an Vertretern der Alliaceae Agardh: 1. Morphologie der Keimpflanzen der Gattung Allium L., Flora, 1992, vol. 186, pp. 37—52.

    Article  Google Scholar 

  16. Jing, W.C., Xu, J.M., and Yang, L., A study on cytotaxonomy of sect. Anguinum of Allium, Acta. Phytotaxon. Sin., 1999, vol. 37, pp. 20—34.

    Google Scholar 

  17. Herden, T., Hanelt, P., and Friesen, N., Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae), Mol. Phylogenet. Evol., 2016, vol. 95, pp. 79—93.

    Article  PubMed  Google Scholar 

  18. Straub, S.C.K., Parks, M., Weitemier, K., et al., Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics, Am. J. Bot., 2012, vol. 99, pp. 349—364.

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, L.P., Zhang, Q., Sun, R.R., et al., Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times, Nat. Commun., 2014, vol. 5, p. 12.

    Article  CAS  Google Scholar 

  20. Barrett, C.F., Baker, W.J., Comer, J.R., et al., Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots, New. Phytol., 2016, vol. 209, pp. 855—870.

    Article  PubMed  Google Scholar 

  21. Twyford, A.D. and Ness, R.W., Strategies for complete plastid genome sequencing, Mol. Ecol. Resour., 2017, vol. 17, pp. 858—868.

    Article  PubMed  Google Scholar 

  22. Zhou, T., Chen, C., Wei, Y., et al., Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species, Front. Plant. Sci., 2016, vol. 7, p. 1512.

    PubMed  PubMed Central  Google Scholar 

  23. Zhu, A.D., Guo, W.H., Gupta, S., et al., Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates, New. Phytol., 2016, vol. 209, pp. 1747—1756.

    Article  CAS  PubMed  Google Scholar 

  24. Xu, W.Q., Losh, J., Chen, C., et al., Comparative genomics of figworts (Scrophularia, Scrophulariaceae), with implications for the evolution of Scrophularia and Lamiales, J. Syst. Evol., 2018, vol. 999, pp. 1—11.

    Google Scholar 

  25. Fu, C.N., Li, H.T., Milne, R., et al., Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution, BMC Genomics, 2017, vol. 18, p. 956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ni, Z.X., Ye, Y.J., Bai, T.D., et al., Complete chloroplast genome of Pinus massoniana (Pinaceae): gene rearrangements, loss of ndh genes, and short inverted repeats contraction, expansion, Molecules, 2017, vol. 22, p. 1528.

    Article  CAS  PubMed Central  Google Scholar 

  27. Huang, D.I., Hefer, C.A., Kolosova, N., et al., Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae), New. Phytol., 2014, vol. 204, pp. 693—703.

    Article  PubMed  Google Scholar 

  28. Yurina, N.P. and Odintsova, M.S., Comparative structural organization of plant chloroplast and mitochondrial genomes, Russ. J. Genet., 1998, vol. 34, pp. 1—16.

    CAS  Google Scholar 

  29. Jansen, R.K., Raubeson, L.A., Boore, J.L., et al., Methods for obtaining and analyzing whole chloroplast genome sequences, Methods Enzymol., 2005, vol. 395, pp. 348—384.

    Article  CAS  PubMed  Google Scholar 

  30. Goulding, S.E., Olmstead, R.G., Morden, C.W., and Wolfe, K.H., Ebb and flow of the chloroplast inverted repeat, Mol. Gen. Genet., 1996, vol. 252, pp. 195—206.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R.J., Cheng, C.L., Chang, C.C., et al., Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots, BMC Evol. Biol., 2008, vol. 8, p. 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wicke, S., Schaferhoff, B., Depamphilis, C.W., and Müller, K.F., Disproportional plastome-wide increase of substitution rates and relaxed purifying selection in genes of Carnivorous Lentibulariaceae, Mol. Biol. Evol., 2014, vol. 31, pp. 529—545.

    Article  CAS  PubMed  Google Scholar 

  33. Downie, S.R. and Jansen, R.K., A comparative analysis of whole plastid genomes from the Apiales: expansion and contraction of the inverted repeat, mitochondrial to plastid transfer of DNA, and identification of highly divergent noncoding regions, Syst. Bot., 2015, vol. 40, pp. 336—351.

    Article  Google Scholar 

  34. Wu, C.S. and Chaw, S.M., Evolutionary stasis in cycad plastomes and the first case of plastome GC-biased gene conversion, Genome Biol. Evol., 2015, vol. 7, pp. 2000—2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Keeling, P.J. and Palmer, J.D., Horizontal gene transfer in eukaryotic evolution, Nat. Rev. Genet., 2008, vol. 9, p. 605.

    Article  CAS  PubMed  Google Scholar 

  36. Daniell, H., Wurdack, K.J., Kanagaraj, A., et al., The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron, Theor. Appl. Genet., 2008, vol. 116, p. 723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peredo, E.L., King, U.M., and Les, D.H., The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm, PLoS One, 2013, vol. 8. e68591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Doyle, J.J., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11—15.

    Google Scholar 

  39. Zerbino, D.R. and Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res., 2008, vol. 18, pp. 821—829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schulz, M.H., Zerbino, D.R., Vingron, M., and Birney, E., Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels, Bioinformatics, 2012, vol. 28, pp. 1086—1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kearse, M., Moir, R., Wilson, A., et al., Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, vol. 28, pp. 1647—1649.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang, D.I. and Cronk, Q.C.B., Plann: a command-line application for annotating plastome sequences, Appl. Plant. Sci., 2015, vol. 3, p. 1500026.

    Article  Google Scholar 

  43. Lohse, M., Drechsel, O. and Bock, R., OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes, Curr. Genet., 2007, vol. 52, pp. 267—274.

    Article  CAS  PubMed  Google Scholar 

  44. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., et al., REPuter: the manifold applications of repeat analysis on a genomic scale, Nucleic Acids Res., 2001, vol. 29, pp. 4633—4642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Q. and Wan, J.M., SSRHunter: development of a local searching software for SSR sites, Yi Chuan, 2005, vol. 27, pp. 808—810.

    PubMed  Google Scholar 

  46. Katoh, K., Misawa, K., Kei-ichi, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, pp. 3059—3066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castresana, J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis, Mol. Biol. Evol., 2000, vol. 17, pp. 540—552.

    Article  CAS  PubMed  Google Scholar 

  48. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 2014, vol. 30, pp. 1312—1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, L., Stoeckert, C.J., and Roos, D.S., OrthoMCL: identification of ortholog groups for eukaryotic genomes, Genome Res., 2003, vol. 13, pp. 2178—2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Löytynoja, A., Phylogeny-aware alignment with PRANK, in Multiple Sequence Alignment Methods, Totowa: Humana, 2014, pp. 155—170.

    Google Scholar 

  51. Yang, Z.H., PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol., 2007, vol. 24, pp. 1586—1591.

    Article  CAS  PubMed  Google Scholar 

  52. Huotari, T. and Korpelainen, H., Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes, Gene, 2012, vol. 508, pp. 96—105.

    Article  CAS  PubMed  Google Scholar 

  53. Plunkett, G.M. and Downie, S.R., Expansion and contraction of the chloroplast inverted repeat in Apiaceae subfamily Apioideae, Syst. Bot., 2000, vol. 25, pp. 648—667.

    Article  Google Scholar 

  54. Goremykin, V.V., Nikiforova, S.V., Biggs, P.J., et al., The evolutionary root of flowering plants, Syst. Biol., 2012, vol. 62, pp. 50—61.

    Article  PubMed  Google Scholar 

  55. Ma, J., Yang, B.X., Zhu, W., et al., The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms, Gene, 2013, vol. 528, pp. 120—131.

    Article  CAS  PubMed  Google Scholar 

  56. Weng, M.L., Blazier, J.C., Govindu, M., and Jansen, R.K., Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates, Mol. Biol. Evol., 2014, vol. 31, pp. 645—659.

    Article  CAS  PubMed  Google Scholar 

  57. Dugas, D.V., Hernandez, D., Koenen, E.J.M., et al., Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP, Sci. Rep., 2015, vol. 5, p. 16958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song, Y., Dong, W.P., Liu, B., et al., Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae, Front. Plant Sci., 2015, vol. 6, p. 662.

    PubMed  PubMed Central  Google Scholar 

  59. Wolf, P.G., Roper, J.M. and Duffy, A.M., The evolution of chloroplast genome structure in ferns, Genome, 2010, vol. 53, pp. 731—738.

    Article  CAS  PubMed  Google Scholar 

  60. Jansen, R.K., Cai, Z., Raubeson, L.A., et al., Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns, Proc. Natl. Acad. Sci., 2007, vol. 104, pp. 19369—19374.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Green, B.R., Chloroplast genomes of photosynthetic eukaryotes, Plant J., 2011, vol. 66, pp. 34—44.

    Article  CAS  PubMed  Google Scholar 

  62. Blazier, J.C., Guisinger, M.M., and Jansen, R.K., Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae), Plant Mol. Biol., 2011, vol. 76, pp. 263—272.

    Article  CAS  Google Scholar 

  63. Ni, L.H., Zhao, Z.L., Xu, H.X., et al., Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine, Curr. Genet., 2017, vol. 63, pp. 241—252.

    Article  CAS  PubMed  Google Scholar 

  64. Kawaguchi, M., Hiroi, J., Miya, M., et al., Intron-loss evolution of hatching enzyme genes in Teleostei, BMC Evol. Biol., 2010, vol. 10, p. 260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ivanova, Z., Sablok, G., Daskalova, E., et al., Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response, Front. Plant Sci., 2017, vol. 8, p. 204.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gemayel, R., Cho, J., Boeynaems, S., and Verstrepen, K.J., Beyond junk-variable tandem repeats as facilitators of rapid evolution of regulatory and coding sequences, Genes, 2012, vol. 3, pp. 461—480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Voronova, A., Belevich, V., Jansons, A., and Rungis, D., Stress-induced transcriptional activation of retrotransposon-like sequences in the Scots pine (Pinus sylvestris L.) genome, Tree Genet. Genomes, 2014, vol. 10, pp. 937—951.

    Article  Google Scholar 

  68. Wu, Z., Tembrock, L.R., and Ge, S., Are differences in genomic data sets due to true biological variants or errors in genome assembly: an example from two chloroplast genomes, PLoS One, 2015, vol. 10. e0118019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y.J., Du, L.W., Liu, A., et al., The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses, Front. Plant Sci., 2016, vol. 7, p. 306.

    PubMed  PubMed Central  Google Scholar 

  70. Daniell, H., Lin, C.S., Yu M., and Chang, W.J., Chloroplast genomes: diversity, evolution, and applications in genetic engineering, Genome Biol., 2016, vol. 17, p. 134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Williams, A.V., Miller, J.T., Small, I., et al., Integration of complete chloroplast genome sequences with small amplicon datasets improves phylogenetic resolution in Acacia, Mol. Phylogenet. Evol., 2016, vol. 96, pp. 1—8.

    Article  CAS  PubMed  Google Scholar 

  72. Tonti-Filippini, J., Nevill, P.G., Dixon, K., and Small, I., What can we do with 1000 plastid genomes?, Plant J., 2017, vol. 90, pp. 808—818.

    Article  CAS  PubMed  Google Scholar 

  73. Stebbins, G.L., Chromosomal Evolution in Higher Plants, London: Science Reviews, 1971, pp. 270—272.

  74. Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R.L., Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot., 2007, vol. 94, pp. 275—288.

    Article  CAS  PubMed  Google Scholar 

  75. Dong, W.P., Liu, J., Yu, J., et al., Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding, PLoS One, 2012, vol. 7. e35071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, K.J. and Jansen, R.K., ndhF sequence evolution and the major clades in the sunflower family, Proc. Natl. Acad. Sci., 1995, vol. 92, pp. 10379—10383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Müller, K. and Borsch, T., Systematics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high mutational rates, Plant Syst. Evol., 2005, vol. 250, pp. 39—67.

    Article  CAS  Google Scholar 

  78. Müller, K. and Borsch, T., Phylogenetics of Amaranthaceae using matK/trnK sequence data-evidence from parsimony, likelihood and Bayesian approaches, Ann. Mo. Bot. Gard., 2005, vol. 92, pp. 66—102.

    Google Scholar 

  79. Taberlet, P., Coissac, E., Pompanon, F., et al., Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding, Nucleic Acids Res., 2006, vol. 35. e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wanke, S., Jaramillo, M.A., Borsch, T., et al., Evolution of Piperales—matK gene and trnK intron sequence data reveal lineage specific resolution contrast, Mol. Phylogenet. Evol., 2007, vol. 42, pp. 477—497.

    Article  CAS  PubMed  Google Scholar 

  81. Group, C.P.W., Hollingsworth, P.M., Forrest, L.L., et al., A DNA barcode for land plants, Proc. Natl. Acad. Sci. 2009, vol. 106, pp. 12794—12797.

    Article  Google Scholar 

  82. Dong, W.P., Xu, C., Li, C.H., et al., ycf1, the most promising plastid DNA barcode of land plants, Sci. Rep., 2015, vol. 5, p. 8348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sasaki, Y. and Nagano, Y., Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding, Biosci. Biotechnol. Biochem., 2004, vol. 68, pp. 1175—1184.

    Article  CAS  PubMed  Google Scholar 

  84. Figueroa, P., Gómez, I., Holuigue, L., et al., Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron—sulphur subunit of succinate dehydrogenase and expression by alternative splicing, Plant J., 1999, vol. 18, pp. 601—609.

    Article  CAS  PubMed  Google Scholar 

  85. Rogalski, M., Schöttler, M.A., Thiele, W., et al., Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions, Plant Cell, 2008, vol. 20, pp. 2221—2237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author was grateful to the opened cp genome data from public databases. The author thanked Chuan Xie, Jin-Bo Tan, Fu-Min Xie and Jun-Pei Chen for the help of sequence analysis. We declare that there are no known conflicts of interest associated with this publication. We undertake that the work is our original work and the manuscript have not been published elsewhere or simultaneously submitted to other journals.

Funding

This work was supported by the National Natural Science Foundation of China (grant nos. 31872647, 31570198), the Specimen Platform of China, Teaching Specimen’s sub-platform (Available website: http://mnh.scu.edu.cn/), the Science and Technology Basic Work (grant no. 2013FY112100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. He.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, F.Y., Y, X., Xie, D.F. et al. Comparative Complete Chloroplast Genome Analyses and Contribution to the Understanding of Chloroplast Phylogeny and Adaptive Evolution in Subgenus Anguinum. Russ J Genet 55, 872–884 (2019). https://doi.org/10.1134/S1022795419070081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419070081

Keywords:

Navigation