Skip to main content

Advertisement

Log in

Effect of Fe content on nonprecious cathodic catalysts derived from a metal–organic framework for direct ammonia fuel cells

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Ammonia is considered a promising hydrogen carrier due to its high hydrogen density and liquefaction temperature. Considering that the energy efficiency generally decreases as chemical conversion is repeated, it is more efficient to directly use ammonia as a fuel for fuel cells. However, catalysts in direct ammonia fuel cells have the critical issues of sluggish ammonia oxidation reaction (AOR) rate and poisoning of reaction intermediates. In particular, the use of precious metal as cathodic catalysts has been limited due to ammonia crossover and poisoning. In this study, we introduce Fe-based single-atom catalysts with selective activity for the oxygen reduction reaction (ORR) even in the presence of ammonia. As the Fe content increased, the single-atom structure of the catalysts changed into Fe nanoparticles or carbides. Among our Fe–N–C catalysts, FeNC-50 with a Fe loading amount of 0.34 wt% showed the highest ORR performance regardless of the ammonia concentration. In particular, the difference in activity between the catalysts increased as the concentration increased. The FeNC-50 catalyst showed remarkable stability after 1000 cycles. Therefore, we believe that single-atom dispersion is an important factor in the development of stable non-precious catalysts with high activity and inactivity for the ORR and AOR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Züttel A, Remhof A, Borgschulte A, Friedrichs O (2010) Hydrogen: the future energy carrier. Philos Trans R Soc A: Math Phys Eng Sci 368:3329–3342. https://doi.org/10.1098/rsta.2010.0113

    Article  CAS  Google Scholar 

  2. Assumpção MHMT, Piasentin RM, Hammer P, De Souza RFB, Buzzo GS, Santos MC, Spinacé EV, Neto AO, Silva JCM (2015) Oxidation of ammonia using PtRh/C electrocatalysts: fuel cell and electrochemical evaluation. Appl Catal B: Environ 174:136–144. https://doi.org/10.1016/j.apcatb.2015.02.021

    Article  CAS  Google Scholar 

  3. Kwon S, Lee SG (2015) Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study. Carbon Lett [Internet] 16(3):198–202. https://doi.org/10.5714/CL.2015.16.3.198

    Article  Google Scholar 

  4. Lee HI, Kim WJ, Heo Y-J, Son Y-R, Park S-J (2018) Control of interlayer spacing of expanded graphite for improved hydrogen storage capacity. Carbon Lett [Internet] 27:117–120. https://doi.org/10.5714/CL.2018.27.117

    Article  Google Scholar 

  5. Jeerh G, Zhang M, Tao S (2021) Recent progress in ammonia fuel cells and their potential applications. J Mater Chem A 9:727–752. https://doi.org/10.1039/D0TA08810B

    Article  CAS  Google Scholar 

  6. Kordesch K, Gsellmann J, Cifrain M, Hacker V, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR (2000) Alkaline fuel cells applications. J Power Sources. https://doi.org/10.1016/S0378-7753(99)00429-2

    Article  Google Scholar 

  7. Christensen CH, Johannessen T, Sørensen RZ, Nørskov JK (2006) Towards an ammonia-mediated hydrogen economy? Catal Today 111:140–144. https://doi.org/10.1016/j.cattod.2005.10.011

    Article  CAS  Google Scholar 

  8. Guo Y, Pan Z, An L (2020) Carbon-free sustainable energy technology: Direct ammonia fuel cells. J Power Sources 476:228454. https://doi.org/10.1016/j.jpowsour.2020.228454

    Article  CAS  Google Scholar 

  9. Gottesfeld S (2018) The direct ammonia fuel cell and a common pattern of electrocatalytic processes. J Electrochem Soc 165:J3405–J3412. https://doi.org/10.1149/2.0431815jes

    Article  CAS  Google Scholar 

  10. Wang T, Zhao Y, Setzler BP, Yan Y (2021) Improving performance and durability of low temperature direct ammonia fuel cells: effect of backpressure and oxygen reduction catalysts. J Electrochem Soc 168:014507. https://doi.org/10.1149/1945-7111/abdcca

    Article  CAS  Google Scholar 

  11. Li Y, Pillai HS, Wang T, Hwang S, Zhao Y, Qiao Z, Mu Q, Karakalos S, Chen M, Yang J, Su D, Xin H, Yan Y, Wu G (2021) High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ Sci 14:1449–1460. https://doi.org/10.1039/D0EE03351K

    Article  CAS  Google Scholar 

  12. Zhao Y, Wang T, Setzler BP, Abbasi R, Wang J, Yan Y (2021) A high-performance gas-fed direct ammonia hydroxide exchange membrane fuel cell. ACS Energy Lett 6:1996–2002. https://doi.org/10.1021/acsenergylett.1c00370

    Article  CAS  Google Scholar 

  13. Okanishi T, Katayama Y, Muroyama H, Matsui T, Eguchi K (2015) SnO2-modified Pt electrocatalysts for ammonia–fueled anion exchange membrane fuel cells. Electrochim Acta 173:364–369. https://doi.org/10.1016/j.electacta.2015.05.066

    Article  CAS  Google Scholar 

  14. Hu Z, Xiao Q, Xiao D, Wang Z, Gui F, Lei Y, Ni J, Yang D, Zhang C, Ming P (2021) Synthesis of anti-poisoning spinel Mn–Co–C as cathode catalysts for low-temperature anion exchange membrane direct ammonia fuel cells. ACS Appl Mater Interfaces 13:53945–53954. https://doi.org/10.1021/acsami.1c16251

    Article  CAS  Google Scholar 

  15. Lee KR, Song D, Park SB, Han J-I (2014) A direct ammonium carbonate fuel cell with an anion exchange membrane. RSC Adv 4:5638–5641. https://doi.org/10.1039/C3RA44057E

    Article  CAS  Google Scholar 

  16. Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc Chem Res 46:1848–1857. https://doi.org/10.1021/ar300359w

    Article  CAS  Google Scholar 

  17. Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116

    Article  Google Scholar 

  18. Kim HY, Im DS, Son UH, Lee HR, Joh H-I (2022) Replacement effect of fresh electrolyte on the accelerated deactivation test and recovery process of Pt/C catalysts in a half-cell system. Carbon Lett 32:313–319. https://doi.org/10.1007/s42823-021-00310-w

    Article  Google Scholar 

  19. Lee C-H, Park H-N, Lee Y-K, Chung YS, Lee S, Joh H-I (2019) Palladium on yttrium-embedded carbon nanofibers as electrocatalyst for oxygen reduction reaction in acidic media. Electrochem Commun 106:106516. https://doi.org/10.1016/j.elecom.2019.106516

    Article  CAS  Google Scholar 

  20. Hwang SY, Joh H-I (2020) (200) facet-dominant platinum nanoparticles synthesized using gases generated from the decomposition of electrospun Pt-polymer composite nanofibers. J Electroanal Chem 871:114287. https://doi.org/10.1016/j.jelechem.2020.114287

    Article  CAS  Google Scholar 

  21. Rosca V, Koper MTM (2006) Electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) surfaces. Phys Chem Chem Phys 8:2513–2524. https://doi.org/10.1039/B601306F

    Article  CAS  Google Scholar 

  22. Li Z-F, Wang Y, Botte GG (2017) Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts. Electrochim Acta 228:351–360. https://doi.org/10.1016/j.electacta.2017.01.020

    Article  CAS  Google Scholar 

  23. He Y, Liu S, Priest C, Shi Q, Wu G (2020) Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem Soc Rev 49:3484–3524. https://doi.org/10.1039/C9CS00903E

    Article  CAS  Google Scholar 

  24. Lee SY, Jang HW, Lee HR, Joh H-I (2021) Size effect of metal–organic frameworks with iron single-atom catalysts on oxygen–reduction reactions. Carbon Lett 31:1349–1355. https://doi.org/10.1007/s42823-021-00292-9

    Article  Google Scholar 

  25. Chen X, Wang N, Shen K, Xie Y, Tan Y, Li Y (2019) MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl Mater Interfaces 11:25976–25985. https://doi.org/10.1021/acsami.9b07436

    Article  CAS  Google Scholar 

  26. Qiao M, Wang Y, Wang Q, Hu G, Mamat X, Zhang S, Wang S (2020) Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells. Angewandte Chemie Int Edn 59:2688–2694. https://doi.org/10.1002/anie.201914123

    Article  CAS  Google Scholar 

  27. Zhao Y, Setzler BP, Wang J, Nash J, Wang T, Xu B, Yan Y (2019) An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule 3:2472–2484. https://doi.org/10.1016/j.joule.2019.07.005

    Article  CAS  Google Scholar 

  28. Abbasi R, Wang H, Lattimer JRC, Xu H, Wu G, Yan Y (2020) Effect of ammonia on the electrocatalysis of oxygen reduction reaction in base. J Electrochem Soc 167:164510. https://doi.org/10.1149/1945-7111/abcde1

    Article  CAS  Google Scholar 

  29. Tran T-N, Shin C-H, Lee B-J, Samdani JS, Park J-D, Kang T-H, Yu J-S (2018) Fe–N-functionalized carbon electrocatalyst derived from a zeolitic imidazolate framework for oxygen reduction: Fe and NH3 treatment effects. Catal Sci Technol 8:5368–5381. https://doi.org/10.1039/C8CY01140K

    Article  CAS  Google Scholar 

  30. Ganesan S, Leonard N, Barton SC (2014) Impact of transition metal on nitrogen retention and activity of iron–nitrogen–carbon oxygen reduction catalysts. Phys Chem Chem Phys 16:4576–4585. https://doi.org/10.1039/C3CP54751E

    Article  CAS  Google Scholar 

  31. Mehmood A, Ali B, Gong M, Kim MG, Kim J-Y, Bae J-H, Kucernak A, Kang Y-M, Nam K-W (2021) Development of a highly active FeNC catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes. J Colloid Interface Sci 596:148–157. https://doi.org/10.1016/j.jcis.2021.03.081

    Article  CAS  Google Scholar 

  32. Xu J, Liang G, Chen D, Li Z, Zhang H, Chen J, Xie F, Jin Y, Wang N, Meng H (2022) Iron and nitrogen doped carbon derived from ferrocene and ZIF-8 as proton exchange membrane fuel cell cathode catalyst. Appl Surf Sci 573:151607. https://doi.org/10.1016/j.apsusc.2021.151607

    Article  CAS  Google Scholar 

  33. Jiang W-J, Gu L, Li L, Zhang Y, Zhang X, Zhang L-J, Wang J-Q, Hu J-S, Wei Z, Wan L-J (2016) Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138:3570–3578. https://doi.org/10.1021/jacs.6b00757

    Article  CAS  Google Scholar 

  34. Kang G-S, Jang J-H, Son S-Y, Lee C-H, Lee Y-K, Lee DC, Yoo SJ, Lee S, Joh H-I (2020) Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. J Mater Chem A 8:22379–22388. https://doi.org/10.1039/D0TA07748H

    Article  CAS  Google Scholar 

  35. Feng L, Wang K-Y, Powell J, Zhou H-C (2019) Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1:801–824. https://doi.org/10.1016/j.matt.2019.08.022

    Article  Google Scholar 

  36. Kang G-S, Jang J-H, Son S-Y, Lee Y-K, Lee DC, Yoo SJ, Lee S, Joh H-I (2022) Pyrrolic N wrapping strategy to maximize the number of single-atomic Fe-Nx sites for oxygen reduction reaction. J Power Sources 520:230904. https://doi.org/10.1016/j.jpowsour.2021.230904

    Article  CAS  Google Scholar 

  37. Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086. https://doi.org/10.1021/nl080452q

    Article  CAS  Google Scholar 

  38. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  39. Ma Y, Luo S, Tian M, Lu JE, Peng Y, Desmond C, Liu Q, Li Q, Min Y, Xu Q, Chen S (2020) Hollow carbon spheres codoped with nitrogen and iron as effective electrocatalysts for oxygen reduction reaction. J Power Sources 450:227659. https://doi.org/10.1016/j.jpowsour.2019.227659

    Article  CAS  Google Scholar 

  40. Wu J, Ma L, Yadav RM, Yang Y, Zhang X, Vajtai R, Lou J, Ajayan PM (2015) Nitrogen-doped graphene with pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl Mater Interfaces 7:14763–14769. https://doi.org/10.1021/acsami.5b02902

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Research Foundation of Korea (NRF) (2018M1A2A2061989) and the Korea Electric Power Corporation (Grant number: R21XO01-15), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ik Joh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5051 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, HW., Lee, S.Y., Lee, J.Y. et al. Effect of Fe content on nonprecious cathodic catalysts derived from a metal–organic framework for direct ammonia fuel cells. Carbon Lett. 33, 215–223 (2023). https://doi.org/10.1007/s42823-022-00418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00418-7

Keywords

Navigation