Skip to main content

Advertisement

Log in

Melamine-based resins and their carbons for CO2 capture: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The global atmospheric CO2 concentration has reached 420 ppm in 2020 from 280 ppm in the 1970s at a rapid pace leading to adverse climate change impacts. As per the date, CO2 capture by amine scrubbers is the prominent commercially available technology. The limitations of this technology include high operating costs, high energy penalties, amine emissions, and corrosion of scrubbing containers. Recent reports on solid adsorbents such as zeolites, inorganic and organic frameworks, and activated carbon have shown meritorious potential for CO2 capture. Specifically, melamine is a cost-effective and nitrogen-rich compound which enriches basic functionalities in the polymer or other adsorbents which facilitates specific interaction with CO2. The nitrogen-enriched carbons were prepared from melamine-based polymers using different chemical activation procedures which have reported highly selective CO2 adsorption. The effect of carbonization on surface properties such as surface area, pore volume, and thermal stability and surface basicity of different adsorbents was discussed. A detailed review was carried out specifically for melamine-based polymer and their carbons for CO2 capture applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Harris, J. Weinzettel, A. Bigano, A. Källmén, J. Clean. Prod. 248, 119206 (2020). https://doi.org/10.1016/j.jclepro.2019.119206

    Article  Google Scholar 

  2. M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Nat 458, 1158–1162 (2009). https://doi.org/10.1038/nature08017

    Article  CAS  Google Scholar 

  3. X. Zhao, H. Yin, Y. Zhao, Appl. Energy 149, 238–247 (2015). https://doi.org/10.1016/j.apenergy.2015.03.112

    Article  CAS  Google Scholar 

  4. B. Cai, J. Wang, J. He, Y. Geng, Appl. Energy 166, 191–200 (2014). https://doi.org/10.1016/j.apenergy.2015.11.006

    Article  CAS  Google Scholar 

  5. T. DeVries, Glob. Biogeochem. Cycles 28(7), 631–647 (2014). https://doi.org/10.1002/2013GB004739

    Article  CAS  Google Scholar 

  6. C. Mora, D. Spirandelli, E.C. Franklin, J. Lynham, M.B. Kantar, W. Miles, C.Z. Smith, et al., Nat. Clim. Chang. 8, 1062–1071 (2018). https://doi.org/10.1038/s41558-018-0315-6

    Article  CAS  Google Scholar 

  7. Y. Xu, V. Ramanathan, Proc. Natl. Acad. Sci. 114(39), 10315–10323 (2017). https://doi.org/10.1073/pnas.1618481114

    Article  CAS  Google Scholar 

  8. P. Good, B. Booth, R. Chadwick, et al., Nat. Commun. 7, 13667 (2016). https://doi.org/10.1038/ncomms13667

    Article  Google Scholar 

  9. N. Skliris, J. Zika, G. Nurser, S.A. Josey, R. Marsh, Sci. Rep. 6, 38752 (2016). https://doi.org/10.1038/srep38752

    Article  CAS  Google Scholar 

  10. L. Tao, Y. Hu, J. Liu, Clim. Dyn. 46, 3345–3350 (2016). https://doi.org/10.1007/s00382-015-2772-1

    Article  Google Scholar 

  11. T. Wilberforce, A. Baroutaji, B. Soudan, A.H. Al-Alami, A.G. Olabi, Sci. Total Environ. 657, 56–72 (2019). https://doi.org/10.1015/j.scitotenv.2018.11.424

    Article  CAS  Google Scholar 

  12. A.D. Lueking, M.W. Cole, Sci. Total Environ. 590-591, 416–429 (2017). https://doi.org/10.1016/j.scitotenv.2016.12.101

    Article  CAS  Google Scholar 

  13. R. Falkenstein-Smith, P. Zeng, J. Ahn, Proc. Comb. Insti. 36(3), 3969–3976 (2017). https://doi.org/10.1016/j.proci.2016.09.005

    Article  CAS  Google Scholar 

  14. A. Jayakumar, A. Gomez, N. Mahinpey, Appl. Energy 179, 531–543 (2016). https://doi.org/10.1016/j.apenergy.2016.06.149

    Article  CAS  Google Scholar 

  15. C. Nwaoha, T. Supap, R. Idem, C. Saiwan, P. Tontiwachwuthikul, M.J. Al-Marri, A. Benamor, Petroleum 3(1), 10–36 (2017). https://doi.org/10.1016/j.petlm.2016.11.002

    Article  Google Scholar 

  16. D.Y.C. Leung, G.C. Caramanna, M.M. Maroto-Vaaler, Renew. Sust. Energ. Rev. 39, 426–443 (2014). https://doi.org/10.1016/jrser.2014.07.093

    Article  CAS  Google Scholar 

  17. F. d’Amore, F. Bezzo, Int. J. Greenhous. Gas Cont. 65, 99–116 (2017). https://doi.org/10.1016/j.ijggc.2017.08.015

    Article  Google Scholar 

  18. W.-H. Chen, C.-Y. Chen, Appl. Energy 258, 114078 (2020). https://doi.org/10.1016/j.apenergy.2019.114078

    Article  CAS  Google Scholar 

  19. A.M. Yousf, W.M. El-Maghlany, Y.A. Eldrainy, A. Attia, Energ. 156, 328–351 (2018). https://doi.org/10.1016/j.energy.2018.05.106

    Article  CAS  Google Scholar 

  20. J. Li, H. Zhang, Z. Gao, J. Fu, W. Ao, J. Dai, Energ. Fuels 31(4), 3475–4524 (2017). https://doi.org/10.1021/acs.energyfuels.6b03204

    Article  CAS  Google Scholar 

  21. F. Vega, F.M. Baena-Moreno, L.M. Gallego, F.E. Portillo, B. Navarrete, Z. Zhang, Appl. Energy 260, 114313 (2020). https://doi.org/10.1016/j.apenergy.2019.114313

    Article  CAS  Google Scholar 

  22. M.G. Plaza, C. Pevida, New Trends Coal Convers. 31-58 (2019). https://doi.org/10.1016/B978-0-08-102201-6.00002-9

  23. T. Hirata, H. Nagayasu, T. Yonekawa, M. Inui, T. Kamijo, et al., Energy Procedia 63, 6120–6128 (2014). https://doi.org/10.1016/j.egypro.2014.11.644

    Article  CAS  Google Scholar 

  24. A. Singh, K. Stephenne, Energy Procedia 63, 1678–1685 (2014). https://doi.org/10.1016/j.egypro.2014.11.177

    Article  CAS  Google Scholar 

  25. L.M. Bjerge, P. Brevik, Energy Procedia 63, 6455–6463 (2014). https://doi.org/10.1016/j.egypro.2014.11.680

    Article  CAS  Google Scholar 

  26. J. Zhang, Y. Qiao, D.W. Agar, Chem. Eng. Res. Design 90(6), 743–749 (2012). https://doi.org/10.1016/j.cherd.2012.03.016

    Article  CAS  Google Scholar 

  27. R. Zhang, Y. Zhang, Y. Cheng, Q. Yu, X. Luo, C. Li, Z. Zeng, Y. Liu, X. Jiang, X.E. Hu, Ind. Eng. Chem. Res. 59(7), 3261–3268 (2020). https://doi.org/10.1021/acs.iecr.9b05247

    Article  CAS  Google Scholar 

  28. B. Li, Y. Duan, D. Luebke, B. Morreale, Appl. Energy 102, 1439–1447 (2013). https://doi.org/10.1016/j.apenergy.2012.09.009

    Article  CAS  Google Scholar 

  29. S. Mukherjee, P. Kumar, A. Yang, P. Fennell, J. Environ. Chem. Eng 3(3), 2104–2114. https://doi.org/10.1016/j.jece.2015.07.018

  30. A.B. Rao, E.S. Rubin, Environ. Sci. Technol. 36(20), 4467–4475 (2002). https://doi.org/10.1021/es0158861

    Article  CAS  Google Scholar 

  31. K.C. Omehia, A.G. Clements, S. Michailos, K.J. Hughes, D.B. Ingham, M. Pourkashanian, Int. J. Energy Res. 44(11), 9127–9140 (2020). https://doi.org/10.1002/er.5681

    Article  Google Scholar 

  32. A. Naami, T. Sema, M. Edali, Z. Liang, R. Idem, P. Tontiwachwuthikul, Int. J. Greenhous. Control 19, 3–12 (2013). https://doi.org/10.1016/j.ijggc.2013.08.008

    Article  CAS  Google Scholar 

  33. J.J. Lee, C.-J. Yoo, C.-H. Chen, S.E. Hayes, C. Sievers, C.W. Jones, Langmuir 34(41), 12279–12292 (2018). https://doi.org/10.1021/acs.langmuir.8b02472

    Article  CAS  Google Scholar 

  34. M.S. Alivand, O. Mazaheri, Y. Wu, G.W. Stevens, C.A. Scholes, K.A. Mumford, Appl. Energy 256, 113911 (2019). https://doi.org/10.1016/j.apenergy.2019.113911

    Article  CAS  Google Scholar 

  35. M. Gupta, H.F. Svendsen, J. Phys.Chem. B 123(40), 8433–8447 (2019). https://doi.org/10.1021/acs.jpcb.9b06447

    Article  CAS  Google Scholar 

  36. A. Muhammad, M. Younas, M. Rezakazemi, Sep. Purif. Technol. 241, 116677 (2020). https://doi.org/10.1016/j.seppur.2020.116677

    Article  CAS  Google Scholar 

  37. M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, Prog. Polym. Sci. 39(5), 817–862 (2014). https://doi.org/10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  38. M. Rezakazemi, I. Heydari, Z. Zhang, J.CO2 Util 18, 362–369 (2017). https://doi.org/10.1016/j.jcou.2017.02.006

    Article  CAS  Google Scholar 

  39. M. Younas, M. Rezakazemi, M. Daud, M.B. Wazir, S. Ahmad, N. Ullah, Inamuddin, S. Ramakrishna, Prog. Energy Combust. Sci. 80, 100849 (2020). https://doi.org/10.1016/j.pecs.2020.100849

    Article  Google Scholar 

  40. S. Basu, A.L. Khan, A. Cano-Odena, C. Liu, I.F.J. Vankelecom, Chem. Soc. Rev. 39, 750–768 (2010). https://doi.org/10.1039/B817050A

    Article  CAS  Google Scholar 

  41. T.W. Pechar, S. Kim, B. Vaughan, E. Marand, M. Tsapatsis, H.K. Jeong, C.J. Cornelius, J. Memb, Science 277(1-2), 195–202 (2006). https://doi.org/10.1016/j.memsci.2005.10.029

    Article  CAS  Google Scholar 

  42. C. Song, Q. Liu, N. Ji, S. Deng, J. Zhao, Y. Li, Y. Song, H. Li, Renew. Sust. Energ. Rev. 82, 215–231 (2018). https://doi.org/10.1016/j.rser.2017.09.040

    Article  CAS  Google Scholar 

  43. R. Naqvi, O. Bolland, Int. J. Greenhouse. Gas Control 1(1), 19–30 (2007). https://doi.org/10.1016/S1750-5836(07)00012-6

    Article  CAS  Google Scholar 

  44. R. Siriwardane, H. Tian, G. Richards, T. Simonyi, J. Poston, Energy Fuels 23(8), 3883–3892 (2009). https://doi.org/10.1021/ef9001605

    Article  CAS  Google Scholar 

  45. P.C. Chiu, Y. Ku, Aerosol Air Qual. Res. 12, 1421–1432 (2012). https://doi.org/10.4209/aaqr.2012.08.0215

    Article  CAS  Google Scholar 

  46. M.J. Tuinier, M.S. Annaland, G.J. Kramer, J.A.M. Kuipers, Chem. Eng. Sci. 65(1), 114–119 (2010). https://doi.org/10.1016/j.ces.2009.01.055

    Article  CAS  Google Scholar 

  47. C. Song, Y. Kitamura, S. Li, Energy 65, 580–589 (2014). https://doi.org/10.1016/j.energy.2013.10.087

    Article  CAS  Google Scholar 

  48. M. Mehrpooya, R. Esfilar, S.M. AliMoosavian, J. Clean.Prod 142(Part 4), 1749–1764 (2017). https://doi.org/10.1016/j.jclepro.2016.11.112

    Article  CAS  Google Scholar 

  49. C. Sepulveda, C. Gomez, N.E.F. Bahraoui, G. Acien, J. CO2Util 30, 158–167 (2019). https://doi.org/10.1016/j.jcou.2019.02.004

    Article  CAS  Google Scholar 

  50. J.R. Seth, P.P. Wangikar, Biotechnol. Bioeng. 112(7), 1281–1296 (2015). https://doi.org/10.1002/bit.25619

    Article  CAS  Google Scholar 

  51. N. Casas, J. Schell, R. Pini, M. Mazzotti, Adsorption 18, 143–161 (2012). https://doi.org/10.1007/s10450-012-9389-z

    Article  CAS  Google Scholar 

  52. X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Energy Environ. Sci. 5, 6668–6681 (2012). https://doi.org/10.1039/C2EE21152A

    Article  CAS  Google Scholar 

  53. K. Goto, K. Yogo, T. Higashii, Appl. Energy 111, 710–720 (2013). https://doi.org/10.1016/j.apenergy.2013.05.020

    Article  CAS  Google Scholar 

  54. Z. Dai, L. Ansaloni, L. Deng, Ind. Eng. Chem. Res. 55(20), 5983–5992. https://doi.org/10.1021/acs.iecr.6b01247

  55. Z.W. Ma, P. Zhang, H.S. Bao, S. Deng, Renew. Sust. Energ. Rev. 53, 1273–1302 (2016). https://doi.org/10.1016/j.rser.2015.09.076

    Article  CAS  Google Scholar 

  56. D.M. Thomas, J. Mechery, S.V. Paulose, Environ. Sci. Pollut. Res. 23, 16926–16940 (2016). https://doi.org/10.1007/211356-016-7158-3

    Article  CAS  Google Scholar 

  57. Q. Wang, J. Luo, Z. Zhong, A. Borgna, Energy Environ. Sci. 4, 42–55 (2011). https://doi.org/10.1039/C0EE00064G

    Article  CAS  Google Scholar 

  58. G. Singh, J. Lee, A. Karakoti, R. Bahadur, J. Yi, D. Zhao, K. AlBahily, A. Vinu, Chem. Soc. Rev. 49, 4360–4404 (2020). https://doi.org/10.1039/D0CS00075B

    Article  CAS  Google Scholar 

  59. S.-Y. Lee, S.-J. Park, J. Ind, Eng. Chem. 23, 1–11 (2015). https://doi.org/10.1016/j.jiec.2014.09.001

    Article  CAS  Google Scholar 

  60. S. Choi, J.H. Drese, P.M. Eisenberger, C.W. Jones, Environ. Sci. Technol. 45(6), 2420–2427 (2011). https://doi.org/10.1021/es102797w

    Article  CAS  Google Scholar 

  61. R.A. Khatri, S.S.C. Chuang, Y. Soong, M. Gray, Energy Fuel 20(4), 1514–1520 (2006). https://doi.org/10.1021/ef050402y

    Article  CAS  Google Scholar 

  62. A.A. Azmi, M.A.A. Aziz, J. Environ. Chem. Eng. 7(2), 103022 (2019). https://doi.org/10.1016/j.jece.2019.103022

    Article  CAS  Google Scholar 

  63. M. Oschatz, M. Antonietti, Energy Environ. Sci. 11, 57–70 (2018). https://doi.org/10.1039/C7EE02110K

    Article  CAS  Google Scholar 

  64. T. Ghanbari, F. Abnisa, W.M.A.W. Daud, Sci. Total Environ. 707, 135090 (2020). https://doi.org/10.1016/j.scitotenv.2019.135090

    Article  CAS  Google Scholar 

  65. H. Sharma, A. Dhir, Environ. Chem. Lett. (2020). https://doi.org/10.1007/s10311-020-01118-2

  66. G. Yin, Z. Liu, Q. Liu, W. Wu, Chem. Eng. J. 230, 133–149 (2013). https://doi.org/10.1016/j.cej.2013.06.085

    Article  CAS  Google Scholar 

  67. D. Cazorla-Amorós, J. Alcañiz-Monge, A. Linares-Solano, Langmuir 12, 2820–2824 (1996). https://doi.org/10.1021/la960022s

    Article  Google Scholar 

  68. N.P. Wickramaratne, M. Jaroniec, ACS Appl. Mater. Interfaces 5, 1849–1855 (2013). https://doi.org/10.1021/am400112m

    Article  CAS  Google Scholar 

  69. M.S.R. Shahrom, A.R. Nordin, C.D. Wilfred, J. Environ. Chem. Eng. 7, 103319 (2019). https://doi.org/10.1016/j.jece.2019.103319

    Article  CAS  Google Scholar 

  70. M.G. Plaza, C. Pevida, A. Arenillas, F. Rubiera, J.J. Pis, Fuel 86, 2204–2212 (2007). https://doi.org/10.1016/j.fuel.2007.06.001

    Article  CAS  Google Scholar 

  71. C. Chen, J. Kim, W.-S. Ahn, Fuel 95, 360–364 (2012). https://doi.org/10.1016/j.fuel.2011.10.072

    Article  CAS  Google Scholar 

  72. A.E. Creamer, B. Gao, Environ. Sci. Technol. 50, 7276–7289 (2016). https://doi.org/10.1021/acs.est.6b00627

    Article  CAS  Google Scholar 

  73. N. Hedin, L. Andersson, L. Bergström, J. Yan, Appl. Energy 104, 418–433 (2013). https://doi.org/10.1016/j.apenergy.2012.11.034

    Article  CAS  Google Scholar 

  74. S.J. Datta, C. Khumnoon, Z.H. Lee, W.K. Moon, S. Docao, T.H. Nguyen, I.C. Hwang, D. Moon, P. Oleynikov, O. Terasakim, K.B. Yoon, Sci. 350, 302–306 (2015). https://doi.org/10.1126/science.aab1680

    Article  CAS  Google Scholar 

  75. R.V. Siriwardane, M.-S. Shen, E.P. Fisher, Energy Fuel 17, 571–576 (2003). https://doi.org/10.1021/ef020135l

    Article  CAS  Google Scholar 

  76. M.R. Hudson, W.L. Queen, J.A. Mason, D.W. Fickel, R.F. Lobo, C.M. Brown, J. Am. Chem. Soc. 134, 1970–1873 (2012). https://doi.org/10.1021/ja210580b

    Article  CAS  Google Scholar 

  77. M. Pardakhti, T. Jafari, Z. Tobin, B. Dutta, E. Moharreri, N.S. Shemshaki, S. Suib, R. Srivastava, ACS Appl. Mater. Interfaces 11, 34533–34559 (2019). https://doi.org/10.1021/acsami.9b08487

    Article  CAS  Google Scholar 

  78. A. Wilke, J. Weber, J. Mater. Chem. 21, 5226–5229 (2011). https://doi.org/10.1039/C1JM10171D

    Article  CAS  Google Scholar 

  79. C.F. Martín, E. Stöckel, R. Clowes, D.J. Adams, A.I. Copper, J.J. Pis, F. Rubiera, C. Pevida, J. Mater. Chem. 21, 5475–5483 (2011). https://doi.org/10.1039/C0JM03534C

    Article  Google Scholar 

  80. T.C. Drage, A. Arenillas, K.M. Smith, C. Pevida, S. Piippo, C.E. Snape, Fuel 86(1-2), 22–31 (2007). https://doi.org/10.1016/j.fuel.2006.07.003

    Article  CAS  Google Scholar 

  81. L. Shao, S. Wang, M. Liu, J. Huang, Y.N. Liu, Chem. Eng. J. 339, 509–518 (2018). https://doi.org/10.1016/j.cej.2018.01.145

    Article  CAS  Google Scholar 

  82. Y. Luo, B. Li, W. Wang, K. Wu, B. Tan, Adv. Mater. 24(42), 5703–5707 (2012). https://doi.org/10.1002/adma.201202447

    Article  CAS  Google Scholar 

  83. R. Dawson, D.J. Adams, A.I. Cooper, Chem. Sci. 2, 1173–1177 (2011). https://doi.org/10.1039/C1SSC00100K

    Article  CAS  Google Scholar 

  84. Y. Yuan, H. Huang, L. Chen, Y. Chen, Macromolecules 50(13), 4993–2095-5003 (2017). https://doi.org/10.1021/acs.macromol.7b00971

    Article  CAS  Google Scholar 

  85. Y. Xie, R.-X. Yang, N.-Y. Huang, H.-J. Luo, W.-Q. Deng, J. Energy Chem 23(1), 22–28 (2014). https://doi.org/10.1016/S2095-4956(14)60113-3

    Article  CAS  Google Scholar 

  86. K.V. Rao, R. Haldar, T.K. Maji, S.J. George, Polym. 55(6), 1452–1458 (2014). https://doi.org/10.1016/j.polymer.2014.01.053

    Article  CAS  Google Scholar 

  87. D. Taylor, S.J. Dalgarno, Z. Xu, F. Vilela, Chem. Soc. Rev. 49, 3981–4042 (2020). https://doi.org/10.1039/c9cs00351k

    Article  CAS  Google Scholar 

  88. K. Wang, H. Huang, D. Liu, C. Wang, J. Li, C. Zhong, Environ. Sci. Technol. 50(9), 4869–4876 (2016) acs.est.6b00425

    Article  CAS  Google Scholar 

  89. S.A. Nabavi, G.T. Vladisavljevic, Y. Zhu, V. Manovic, Environ. Sci. Technol. 51(19), 11476–11483 (2017). https://doi.org/10.1021/acs.est.7b03259

    Article  CAS  Google Scholar 

  90. S. Chatterjee, S. Rayalu, S.D. Kolev, R.J. Krupadam, J. Environ. Chem. Eng. 4, 3170–3176 (2016). https://doi.org/10.1016/j.jece.2016.06.007

    Article  CAS  Google Scholar 

  91. R. Bera, M. Ansari, A. Alam, N. Das, ACS Appl. Polym. Mater 1, 959–968 (2019). https://doi.org/10.1021/acsapm.8b00264

    Article  CAS  Google Scholar 

  92. M. Younas, T. Tahir, C. Wu, S. Farrukh, Q. Sohaib, A. Muhammed, M. Rezakazemi, J. Li, J. CO2 Util. 40, 101266 (2020). https://doi.org/10.1016/j.jcou.2020.101266

    Article  CAS  Google Scholar 

  93. A.L. Yaumi, M.Z. AbuBakar, B.H. Hameed, Energy 155, 46–55 (2018). https://doi.org/10.1016/j.energy.2018.04.183

    Article  CAS  Google Scholar 

  94. Y. Li, J. Wang, S. Fan, F. Wang, Z. Shen, H. Duan, J. Xu, Y. Huang, J. Energy Chem 53, 168–174 (2021). https://doi.org/10.1016/j.jechem.2020.05.019

    Article  Google Scholar 

  95. C. Quan, X. Jia, N. Gao, Int. J. Energy Res. 44(2), 1218–1232 (2020). https://doi.org/10.1002/er.5017

    Article  CAS  Google Scholar 

  96. R.M. Omer, E.T.B. Al-Tikrity, G.A. El-Hiti, M.F. Alotibi, E. Yousif, Processes 8(1), 17 (2020). https://doi.org/10.3390/pr8010017

    Article  CAS  Google Scholar 

  97. C. Pevida, T.C. Drage, C.E. Snape, Carbon 46(11), 1464–1474 (2008). https://doi.org/10.1016/j.carbon.2008.06.026

    Article  CAS  Google Scholar 

  98. M.X. Tan, Y. Zhang, J.Y. Ying, Chem. Sus. Chem 6, 1186–1190 (2013). https://doi.org/10.1002/cssc.20130010

    Article  CAS  Google Scholar 

  99. H. Zhou, S. Xu, H. Su, M. Wang, W. Qiao, L. Ling, D. Long, Chem. Commun. 49, 3763–3765 (2013). https://doi.org/10.1039/C3CC41109E

    Article  CAS  Google Scholar 

  100. Q. Xiao, J. Wen, Y. Guo, J. Hu, J. Wang, F. Zhang, G. Tu, Y. Zhong, W. Zhu, Ind. Eng. Chem. Res. 554(91), 2667–2674 (2016). https://doi.org/10.1021/acs.iecr.6b03494

    Article  CAS  Google Scholar 

  101. F. Yin, Z. Zhuang, X. Luo, S. Chen, Appl. Surf. Sci. 434, 514 (2019). https://doi.org/10.1016/j.apsusc.2017.10.198

    Article  CAS  Google Scholar 

  102. L. Wang, J. Guo, X. Xiang, Y. Sang, J. Huang, Chem. Eng. J. 387, 124070 (2020). https://doi.org/10.1016/j.cej.2020.124070

    Article  CAS  Google Scholar 

  103. I.P. Principle, B. Murdoch, J.M. Flannigan, A.J. Fletcher, Mater. Today 10, 195 (2018). https://doi.org/10.1016/j.mtchem.2018.09.006

    Article  CAS  Google Scholar 

  104. L. Liu, C. Song, A. Kong, Mater. Lett. 277, 128191 (2020). https://doi.org/10.1016/j.matlet.2020.128291

    Article  CAS  Google Scholar 

  105. L. Shao, M. Liu, Y. Sang, J. Huang, Microporous Mesoporous Mater. 285, 105 (2019). https://doi.org/10.1016/j.micromeso.2019.05.005

    Article  CAS  Google Scholar 

  106. B. Zhang, J. Yan, G. Li, Z. Wang, Polym. Sci. 10, 3371 (2019). https://doi.org/10.1039/C9PY00465C

    Article  CAS  Google Scholar 

  107. Y. Xie, T. Wang, X. Liu, K. Zou, W.-Q. Deng, Nat. Commun. 4, 1960 (2013). https://doi.org/10.1038/ncomms2960

    Article  CAS  Google Scholar 

  108. G. Li, Z. Wang, Macromolecuels 46, 3058–3066 (2013). https://doi.org/10.1021/ma400496q

    Article  CAS  Google Scholar 

  109. T. Ben, S. Qiu, Cryst. Eng. Comm. 15, 17–26 (2013). https://doi.org/10.1039/C2CE25409C

    Article  CAS  Google Scholar 

  110. C. Xu, H. Hedin, Mater. Today 17, 397–403 (2014). https://doi.org/10.1016/j.mattod.2014.05.007

    Article  CAS  Google Scholar 

  111. S. Zulfiqur, M.I. Sarwar, C.T. Yavuz, RSC Adv. 4, 52263–52269 (2014). https://doi.org/10.1039/C4RA11442F

    Article  CAS  Google Scholar 

  112. F. Tang, J. Hou, K. Liang, J. Huang, Eu. J. Inorg. Chem 2018(37), 4175–4180 (2018). https://doi.org/10.1002/ejic.201800764

    Article  CAS  Google Scholar 

  113. Q. Cai, C. Yin, Q. Xia, J. Cheng, X. Li, Y. Wang, Chem. Eng. Sci. 217, 115528 (2020). https://doi.org/10.1016/j.ces.2020.115528

    Article  CAS  Google Scholar 

  114. Y. Feng, J. Yao, Ind. Eng. Chem. Res. 57(22), 7322–7330 (2018). https://doi.org/10.1021/acs.iecr.8b01232

    Article  CAS  Google Scholar 

  115. P.-O. Hagstrean, K. Oksman, Polym. Compos. 22, 568–578 (2001). https://doi.org/10.1002/pc.10560

    Article  Google Scholar 

  116. F. Salaün, I. Vroman, Eu. Polym. J. 44, 849–860 (2008). https://doi.org/10.1016/j.eurpolymj.2007.11.018

    Article  CAS  Google Scholar 

  117. T.Q. Bui, L.J. Konwar, A. Samikannu, D. Nikjoo, J.-P. Mikkola, ACS Sustain. Chem. Eng. 8(34), 12852–12869 (2020). https://doi.org/10.1021/acssuschemeng.0c03123

    Article  CAS  Google Scholar 

  118. C. Hepburn, E. Adlen, J. Beddington, E.A. Carter, S. Fuss, N.M. Dowell, J.C. Minx, P. Smith, C.K. Williams, Nature 575, 87–97 (2019). https://doi.org/10.1038/s41586-019-1681-6

    Article  CAS  Google Scholar 

  119. B. Friedel, S. Greullich-Weber, Small 2(7), 859–863 (2006). https://doi.org/10.1002/smll.200500516

    Article  CAS  Google Scholar 

  120. M. Kocirik, J. Brych, J. Hradil, Carbon 39, 1919–1928 (2001). https://doi.org/10.1016/S0008-6223(00)00326-2

    Article  CAS  Google Scholar 

  121. J. Gong, X. Chen, T. Tang, Prog. Polym. Sci. 94, 1–32 (2019). https://doi.org/10.1016/j.progpolymsci.2019.04.001

    Article  CAS  Google Scholar 

  122. D. Tiwari, C. Goel, H. Bhunia, P.K. Bajpai, J. Environ. Manag. 197, 415–427 (2017). https://doi.org/10.1016/j.jenvman.2017.04.013

    Article  CAS  Google Scholar 

  123. D. Tiwari, H. Bhunia, P.K. Bajpla, J. Environ. Manag. 218, 579–592 (2018). https://doi.org/10.1016/j.jenvman.2018.04.088

    Article  CAS  Google Scholar 

  124. L. Liu, Z.-H. Xie, Q.-F. Deng, X.-X. Hou, Z.-Y. Yuan, J. Mater.Chem. A 5, 418–425 (2017). https://doi.org/10.1039/C6TA09782K

    Article  CAS  Google Scholar 

  125. D. Jeong, W. Jie, A.A. Adelodun, S. Kim, Y. Jo, J. Appl. Polym. Sci. 136, 47747 (2019). https://doi.org/10.1002/app.47747

    Article  CAS  Google Scholar 

  126. A. Rahman, S.-J. Park, J. Solid State Chem. 258, 573 (2018). https://doi.org/10.1016/j.jssc.2017.11.019

    Article  CAS  Google Scholar 

  127. J. Yu, M. Guo, F. Muhammad, A. Wang, G. Yu, H. Ma, G. Zhu, Microporous Mesoporous Mater. 190, 117–127 (2014). https://doi.org/10.1016/j.micromeso.2014.02.009

    Article  CAS  Google Scholar 

  128. N. Zhang, B. Zou, G.-P. Yang, B. Yu, C.-W. Hu, J. CO2 Util. 22, 9 (2017). https://doi.org/10.1016/j.jcou.2017.09.001

    Article  CAS  Google Scholar 

  129. J. Yin, T. Zhang, E. Schulman, D. Liu, J. Meng, J. Mater. Chem. A 6, 8441 (2018). https://doi.org/10.1039/C8TA00625C

    Article  CAS  Google Scholar 

  130. A. Jaleel, S.-H. Kim, P. Natarajan, G.H. Gunasekar, K. Park, S. Soon, K.-D. Jung, J. CO2 Util. 35, 245 (2020). https://doi.org/10.1016/j.jcou.2019.10.003

    Article  CAS  Google Scholar 

  131. S. Ali, A. Razzaq, A.-L. In, Catal. Today 335, 39–54 (2019). https://doi.org/10.1016/j.cattod.2018.12.003

    Article  CAS  Google Scholar 

  132. F.M. Stuardi, F.M. Pherson, J. Leclaire, Curr. Opin. Green Sust. Chem. 16, 71–76 (2019). https://doi.org/10.1016/j.cogsc.2019.02.003

    Article  Google Scholar 

  133. T.Q. Bui, L.H. Konwar, A. Samikannu, D. Nikjoo, J.-P. Mikkola, ACS Sustain. Chem. Eng. 8, 12851 (2020). https://doi.org/10.1021/acssuschemeng.0c03123

    Article  CAS  Google Scholar 

  134. F. Tang, J. Hou, K. Liang, J. Huang, Y.-N. Liu, J. Inorg. Chem. 37, 4175 (2018). https://doi.org/10.1002/ejic.201800764

    Article  CAS  Google Scholar 

  135. S. Chatterjee, R.J. Krupadam, Environ. Chem. Lett. 17, 465–472 (2019). https://doi.org/10.1007/s10311-018-0774-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Council of Scientific and Industrial Research (CSIR) New Delhi for the project theme CO2 Capture, Utilization and Sequestration (CCUS).

Author information

Authors and Affiliations

Authors

Contributions

Reddithota Krupadam—conceptualized, visualized, and wrote the original draft and edited to finalize the final version. Sadhana Rayalu—carried out formal analysis.

Corresponding author

Correspondence to Reddithota J. Krupadam.

Ethics declarations

Conflict of interest

The authors of this article declare that they have no conflict of interest. The manuscript was written through with the contributions of all authors. All authors contributed equally and approved final version of the manuscript by the Institutional authorities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupadam, R.J., Rayalu, S.S. Melamine-based resins and their carbons for CO2 capture: a review. emergent mater. 4, 545–563 (2021). https://doi.org/10.1007/s42247-020-00157-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00157-3

Keywords

Navigation