Skip to main content
Log in

Characterization and ion transport studies through impedance spectroscopy on (1-x)Pb(NO3)2:xAl2O3 composite solid electrolytes

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

A Correction to this article was published on 06 September 2021

This article has been updated

Abstract

In this paper, we attribute the conduction mechanism in (1-x)Pb(NO3)2:xCeO2 composite solid electrolytes due to the hopping of polyanion (NO3). The matrix of composites, nano-alumina (60 nm) dispersed into Pb(NO3)2, was synthesized and characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) to understand structural, thermal, and morphological properties. XRD and FTIR studies confirm the biphasic nature of composites. FTIR studies reveal the presence of OHˉ and NO3ˉ ions in all the composites. Impedance and modulus spectra were used as tools to study the electrical properties of composites in the temperature range 30 to 330 °C and frequency range 1 Hz to 10 MHz to understand ion transport mechanism. Analysis of AC conductivity data reveals that non-overlapping small polaron tunneling [NSPT] seems to be an appropriate model to understand hopping mechanism of conducting ion species. Maximum enhancement of conductivity was observed in the composite with 10 mol% Al2O3 dispersed system. The distribution of frequency response of imaginary part of modulus response denotes non-Debye behavior at all individual temperatures. The peaks which were obtained from the plots of frequency-dependent imaginary part of modulus, plotted with respect to temperature, had shown an Arrhenius behavior. The values “β” from Kohlrausch-Williams-Watts (KWW) function and n from Johnson power law were found to be temperature-dependent in all these composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. N.F. Uvarov, Composite solid electrolytes: recent advances and design strategies. J. Solid State Electrochem. 15, 367–389 (2011)

    Article  CAS  Google Scholar 

  2. P. Singh, B. Bhattacharya, P.K. Singh, Detail electrical and dielectric studies on carbon-fly ash composite. Phase Transit. 90, 236–243 (2016). https://doi.org/10.1080/01411594.2016.1174778

    Article  CAS  Google Scholar 

  3. V. Ya Kavun, N.F. Uvarov, I.A. Telin, M.M. Polyantsev, A.S. Ulihin, A.B. Slobodyuk, V.K. Goncharuk, V.I. Sergienko, Solid State Ionics 302, 186 (2017)

    Article  Google Scholar 

  4. E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, M.D. McGehee, Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26, 7158–7165 (2014)

    Article  CAS  Google Scholar 

  5. S. Rada, L. Rus, M. Rada, E. Culea, N. Aldea, S. Stan, R.C. Suciu, A. Bot, Synthesis, structure, optical and electrochemical properties of the lead sulfate-lead dioxide-lead glasses and vitroceramics. Solid State Ionics 274, 111–118 (2015)

    Article  CAS  Google Scholar 

  6. H. Isoda, R. Kawashima, Phys. Status Solidi B 244(2), 794 (2007)

    Article  CAS  Google Scholar 

  7. A. Kumar, K. Shahi, Conduction mechanism in composite solid electrolytes, PbX 2-Al2O3 (X = Cl, Br, l) systems. J. Mater. Sci. 30, 4407–4416 (1995)

    Article  CAS  Google Scholar 

  8. Y. Govind Reddy, A. Sadananda Chary, A.M. Awasthi, S. Narender Reddy, Adv. Mater. Proc. 2(10), 667 (2017)

    Article  Google Scholar 

  9. M.Z. Iqbal, Rafiuddin, Enhanced ionic conduction of CdI 2 Ag 2 CrO 4 and Al 2 O 3 composite solid electrolytes. Curr. Appl. Phys. 16, 974–979 (2016)

    Article  Google Scholar 

  10. M. Morales, J.J. Roa, J.M. Perez-Falcon, A. Moure, J. Tartaj, F. Espiell, M. Segarra, J. Power Sources 246, 918–925 (2014)

    Article  CAS  Google Scholar 

  11. L.N. Patro, K. Hariharan, Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5. Ionics 19, 643–649 (2013)

    Article  CAS  Google Scholar 

  12. K. Funke, R.D. Banhatti, Modelling frequency-dependent conductivities and permittivities in the framework of the MIGRATION concept. Solid State Ionics 169, 1–8 (2004)

    Article  CAS  Google Scholar 

  13. Y. Ben Taher, A. Oueslati, M. Gargouri, AC conductivity and NSPT model conduction of KAlP2O7 compound. Ionics 21, 1321–1332 (2015)

    Article  CAS  Google Scholar 

  14. M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, A. Ben Rhaim, Alternative current conduction mechanisms of organic-inorganic compound [N(CH3)3H]2ZnCl4. J. Appl. Phys. 115, 153708 (2014)

    Article  Google Scholar 

  15. D. Zahn, P. Heitjans, J. Maier, Chem. Eur. J. 18, 6225 (2012)

    Article  CAS  Google Scholar 

  16. S.M. David, A.D. Roger, Energy Environ. Sci. 8, 2935 (2015)

    Article  Google Scholar 

  17. A. Schmidt, M. Lerc, J.-P. Eufinger, J. Janek, I. Tranca, M.M. Islam, T. Bredow, R. Dolle, H.-D. Wiemhöfer, H. Boysen, M. Hölzel, Solid State Ionics 254, 48 (2014)

    Article  CAS  Google Scholar 

  18. S. Sultana, Rafiuddin, Arab. J. Chem. 9, S170 (2016)

    Article  CAS  Google Scholar 

  19. J. Marrero-Jerez, P. Nunez, J.R. Frade, Re-examination of effects of alumina on bulk and grain boundary conductivities of CGO solid electrolytes. Solid state ionics 256, 11–18 (2014)

    Article  CAS  Google Scholar 

  20. M. Inoue, I. Hirasawa, J. Cryst. Growth 380, 169 (2013)

    Article  CAS  Google Scholar 

  21. L.N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ionics 239, 41–49 (2013)

    Article  CAS  Google Scholar 

  22. P. Sakthivel, S. Muthukumaran, J. Inorg. Organomet. Polym. 26, 563–571 (2016)

    Article  CAS  Google Scholar 

  23. M.H. Brooker, D.E. Irish, G.E. Boyd, Ionic interactions in crystals: infrared and Raman spectra of powdered Ca(NO3)2, Sr(NO3)2, Ba(NO3)2, and Pb(NO3)2. J. Chem. Phys. 53, 1083–1087 (1970)

    Article  CAS  Google Scholar 

  24. A.B. Beleke, M. Mizuhata, S. Deto, Vib. Spectrosc. 40, 66 (2006)

    Article  CAS  Google Scholar 

  25. H.A. Al-Abadleh, V.H. Grassian, Langmuir 19, 341 (2003)

    Article  CAS  Google Scholar 

  26. M.M. Gafurov, R.K. Sh, Appl. Spectrosc. 76(2), 162–166 (2009)

    Article  CAS  Google Scholar 

  27. A. Kumar, K. Shahi, J. Electrochem. Soc. 142(3), 874 (1995)

    Article  CAS  Google Scholar 

  28. A.K. Nath, A. Kumar, Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochem. Acta 129, 177–186 (2014)

    Article  CAS  Google Scholar 

  29. Y. Zhang, J. Roscow, R. Lewis, H. Khanbareh, V.Y. Topolov, M. Xie, C.R. Bowen, Acta Mater. (2018). https://doi.org/10.1016/j.actamat.2018.05.007

  30. M. Adamu, M.K. Girish, Novel sol–gel synthesis of MgZr4P6O24 composite solid electrolyte and newer insight into the Mg2+-ion conducting properties using impedance spectroscopy. J. Phys. Chem. C 120, 17909–17915 (2016)

    Article  CAS  Google Scholar 

  31. A. Karmakar, A. Ghosh, J. Appl. Phys. 110, 034101 (2011)

    Article  Google Scholar 

  32. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  33. S. Nasri, A.L. Ben Hafsia, M. Tabellout, M. Megdiche, Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δperovskite oxides. RSC Adv. 6, 76659–76665 (2016)

    Article  CAS  Google Scholar 

  34. Y. Govind Reddy, M. Chandrasekar, A. Sadananda Chary, S. Narender Reddy, AIP Conf. Proc. 1832, 110049 (2017)

    Article  Google Scholar 

  35. A. Akbari, I. Chaabane, K. Guidara, Physica E 83, 119 (2016)

    Article  Google Scholar 

  36. A. Kaushal, S.M. Olhero, B. Singh, P.F. Buncan, I. Bdikin, J.M.F. Ferreira, Ceram. Int. 40, 10593–10600 (2014)

    Article  CAS  Google Scholar 

  37. L. Vijayan, R. Cheruku, G. Govindaraj, S. Rajagopalan, Mater. Chem. Phys. 125, 184 (2011)

    Article  CAS  Google Scholar 

  38. C.H.K.K. Reddy, R. Balaji Rao, M.V. Ramana Reddy, J. Phys. Chem. Solids 74, 1093 (2013)

    Article  Google Scholar 

  39. B.M. Voronin, S.V. Volkov, Ionic conductivity of fluorite type crystals CaF2, SrF2, BaF2, and SrCl2 at high temperatures. J. Phys. Chem. Solids 62, 1349–1358 (2001)

    Article  CAS  Google Scholar 

  40. M.V. Madhava Rao, S. Narender Reddy, A. Sadananda Chary, DC ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system. Physica B 362, 193–198 (2005)

    Article  Google Scholar 

  41. N.F. Uvarov, Estimation of electrical properties of composite solid electrolytes of different morphologies. Solid state ionics 302, 19–24 (2017)

    Article  CAS  Google Scholar 

  42. Y. Zhou, S. Adams, R. Prasada Rao, D.E. Doren, A. Neiman, N. Pestereva, Chem. Mater. 20, 6335 (2008)

    Article  CAS  Google Scholar 

  43. X. Tong, S.M. David, Solid State Ionics 299, 78 (2017)

    Article  CAS  Google Scholar 

  44. L. Zhang, M.A. Reddy, M. Fichtner, Solid State Ionics 272, 39 (2015)

    Article  CAS  Google Scholar 

  45. H. Nowtony, G. Heger, Acta Cryst. C42, 133 (1986)

    Google Scholar 

  46. J. Maria Ariza, F. Toribio Ottero, Nitrate and chloride transport through a smart membrane. J. Membr. Sci. 290, 241–249 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the head department of physics of Osmania University and the director of UGC-DAE (Indore) for allowing the use of central facilities. First author acknowledges Suresh Bharadwaj, Engineer, UGC-DAE, Indore, for his help to collect DSC and Impedance data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Narender Reddy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govinda Reddy, Y., Awasthi, A.M., Sadananda Chary, A. et al. Characterization and ion transport studies through impedance spectroscopy on (1-x)Pb(NO3)2:xAl2O3 composite solid electrolytes. emergent mater. 1, 175–184 (2018). https://doi.org/10.1007/s42247-018-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0016-y

Keywords

Navigation