Skip to main content

Advertisement

Log in

Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

3D printing method based on direct ink writing (DIW) opens a novel idea for the structural design of micro supercapacitor electrode with excellent hole structure. However, at present, how to select and broaden the kinds of active materials suitable for printing is still the focus of attention. In this study, two-dimensional lamellar graphene oxide (GO) used as the binder and nano-rod KCu7S4 with excellent tunnel shuttle conductivity are used as the raw material to prepare ink suitable for 3D printing through the simple mechanical mixing. After DIW printing, the conductivity of electrode is realized after simple one-step reduction. Printed rGO/KCu7S4 electrode shows 815.83 F/g for gravimetric capacitance at 0.5 A/g, corresponding to 7.33 F/cm2, and 27.7 F/cm3 for the areal and volumetric capacitance, respectively. At a power density of 2.16 mW/cm2, the assembled symmetrical supercapacitor obtains the areal energy density of 286 μWh/cm2 and excellent cycle stability. This study reveals a simple, economical, and feasible method for the application of metal sulfide materials for DIW printing of supercapacitors and other electrochemical devices.

Graphical abstract

Reduced graphene oxide and KCu7S4 are printed to fabricate electrodes for high performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong H, Gao L, Zheng Y et al (2021) A path of multi-energy hybrids of concentrating solar energy and carbon fuels for low CO2 emission. ES Energy & Environment 13:1–7

    CAS  Google Scholar 

  2. Hu X, Wu H, Liu S et al (2021) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27

    Google Scholar 

  3. Zhao W, Yan Z, Qian LJES (2020) Graphitic carbon nitride: preparation, properties and applications in energy storage. Eng Sci 10:24–34

    CAS  Google Scholar 

  4. Lu X, Liu H, Murugadoss V et al (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng Sci 9:25–34

    CAS  Google Scholar 

  5. Ma Y, Xie X, Yang W et al (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  6. Qu K, Sun Z, Shi C et al (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater 4:670–683

    Article  CAS  Google Scholar 

  7. Liu S, Du H, Liu K et al (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4:1367–1383

    Article  CAS  Google Scholar 

  8. Patil SS, Bhat TS, Teli AM et al (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  9. Xu M, Huang Y, Chen R et al (2021) Green conversion of ganoderma lucidum residues to electrode materials for supercapacitors. Adv Compos Hybrid Mater 4:1270–1280

    Article  CAS  Google Scholar 

  10. Dong X, Zhao X, Chen Y et al (2021) Investigations about the influence of different carbon matrixes on the electrochemical performance of Na3V2 (PO4) 3 cathode material for sodium ion batteries. Adv Compos Hybrid Mater 4:1070–1081

    Article  CAS  Google Scholar 

  11. Wei Y, Luo W, Zhuang Z et al (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4:1082–1091

    Article  CAS  Google Scholar 

  12. Zhai Y, Yang W, Xie X et al (2022) Co3O 4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium–oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  13. Zhuang Z, Wang W, Wei Y et al (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4:938–945

    Article  CAS  Google Scholar 

  14. Xiao L, Qi H, Qu K et al (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316

    Article  CAS  Google Scholar 

  15. Sun Z, Qu K, Li J et al (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424

    Article  CAS  Google Scholar 

  16. Wei Y, Luo W, Li X et al (2022) PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta 406:139874

    Article  CAS  Google Scholar 

  17. Xie P, Liu Y, Feng M et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4:173–185

    Article  CAS  Google Scholar 

  18. Qi G, Liu Y, Chen L et al (2021) Lightweight Fe3C@ Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  19. Shahrubudin N, Lee TC, Ramlan RJPM (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing 35:1286–1296

    Article  Google Scholar 

  20. Lim CWJ, Le KQ, Lu Q et al (2016) An overview of 3-D printing in manufacturing, aerospace, and automotive industries. IEEE Potentials 35:18–22

    Article  Google Scholar 

  21. Manoj A, Bhuyan M, Banik SR et al (2021) 3D printing of nasopharyngeal swabs for COVID-19 diagnose: past and current trends. Mater Today: Proc 44:1361–1368

    CAS  Google Scholar 

  22. Fahmy AR, Amann LS, Dunkel A et al (2021) Sensory design in food 3D printing–structuring, texture modulation, taste localization, and thermal stabilization. Innov Food Sci Emerg 72:102743

    Article  CAS  Google Scholar 

  23. Guo H, Lv R, Bai SJNMS (2019) Recent advances on 3D printing graphene-based composites. Nano Mater Sci 1:101–115

    Article  Google Scholar 

  24. Yang Y, Yuan W, Zhang X et al (2020) Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Appl Energ 257:114002

    Article  CAS  Google Scholar 

  25. Chang P, Mei H, Zhou S et al (2019) 3D printed electrochemical energy storage devices. J Mater Chem A 7:4230–4258

    Article  CAS  Google Scholar 

  26. Zhang S, Wang L, Luo Y et al (2021) A novel UV-curable molecular-modified graphene oxide for high-resolution printed electronics. Carbon 176:470–479

    Article  CAS  Google Scholar 

  27. Zeng J, Dong L, Sun L et al (2021) Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-micro lett 13:1–14

    Article  CAS  Google Scholar 

  28. Xie M, Zhu M, Yang Z et al (2021) Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing. Nano Energy 79:105438

    Article  CAS  Google Scholar 

  29. Camargo JC, Machado LR, Almeida EC et al (2019) Mechanical properties of PLA-graphene filament for FDM 3D printing. Int J Adv Manuf Tech 103:2423–2443

    Article  Google Scholar 

  30. Sowade E, Polomoshnov M, Willert A et al (2019) Toward 3D-printed electronics: inkjet-printed vertical metal wire interconnects and screen-printed batteries. Adv Eng Mater 21:1900568

    Article  CAS  Google Scholar 

  31. You X, Yang J, Feng Q et al (2018) Three-dimensional graphene-based materials by direct ink writing method for lightweight application. Int J Lightweight Mater Manuf 1:96–101

    Google Scholar 

  32. Yang P, Fan HJJAMT (2020) Inkjet and extrusion printing for electrochemical energy storage: a minireview. Adv Mater Technol 5:2000217

    Article  CAS  Google Scholar 

  33. Wu H, Sun H, Han F et al (2021) Negative permittivity behavior in flexible carbon nanofibers-polydimethylsiloxane films. Eng Sci 1

  34. Zhao J, Wei D, Zhang C et al (2021) An overview of oxygen reduction electrocatalysts for rechargeable zinc-air batteries enabled by carbon and carbon composites. Eng Sci 15:1–19

    Google Scholar 

  35. Wu H, Zhong Y, Tang Y et al (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Hybrid Mater 5:419–430

    Article  CAS  Google Scholar 

  36. Wu N, Du W, Hu Q et al (2020) Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23

    Google Scholar 

  37. Zhang Q, Zhang F, Medarametla SP et al (2016) 3D printing of graphene aerogels. Small 12:1702–1708

    Article  CAS  Google Scholar 

  38. Jiang Y, Xu Z, Huang T et al (2018) Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv Funct Mater 28:1707024

    Article  CAS  Google Scholar 

  39. Yun X, Lu B, Xiong Z et al (2019) Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Adv 9:29384–29395

    Article  CAS  Google Scholar 

  40. Corker A, Ng HC-H, Poole RJ et al (2019) 3D printing with 2D colloids: designing rheology protocols to predict"printability"of soft-materials. Soft Matter 15:1444–1456

    Article  CAS  Google Scholar 

  41. Garcia-Tunon E, Feilden E, Zheng H et al (2017) Graphene oxide: an all-in-one processing additive for 3D printing. ACS Appl Mater Inter 9:32977–32989

    Article  CAS  Google Scholar 

  42. Ling S, Kang W, Tao S et al (2019) Highly concentrated graphene oxide ink for facile 3D printing of supercapacitors. Nano Mater Sci 1:142–148

    Article  Google Scholar 

  43. Cheng Z, Liu T, Fang Q et al (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:3448–3456

    Article  CAS  Google Scholar 

  44. Rocha VG, Garcia-Tunon E, Botas C et al (2017) Multimaterial 3D printing of graphene-based electrodes for electrochemical energy storage using thermoresponsive inks. ACS Appl Mater Inter 9:37136–37145

    Article  CAS  Google Scholar 

  45. Yuan S, Fan W, Wang D et al (2021) 3D printed carbon aerogel microlattices for customizable supercapacitors with high areal capacitance. J Mater Chem A 9:423–432

    Article  CAS  Google Scholar 

  46. Kang W, Zeng L, Ling S et al (2021) 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv Energy Mater 11:2100020

    Article  CAS  Google Scholar 

  47. Wang Z, Qe Z, Long S et al (2018) Three-dimensional printing of polyaniline/reduced graphene oxide composite for high-performance planar supercapacitor. ACS Appl Mater Inter 10:10437–10444

    Article  CAS  Google Scholar 

  48. Shen K, Ding J, Yang SJAEM (2018) 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv Energy Mater 8:1800408

    Article  CAS  Google Scholar 

  49. Hou C, Wang B, Murugadoss V et al (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  50. Zhao Y, Liu F, Zhu K et al (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Energy Mater 1–11

  51. Yuan Y, Li Z, Shi Z et al (2020) A facile way to grow NiMn-LDH sheets on KCu7S4 nanowires with synergistic effects for applications in hybrid supercapacitors. J Alloy Compd 825:154056

    Article  CAS  Google Scholar 

  52. Xue Y, Zhang Y, Yang R et al (2021) In-situ synthesis of KCu7S4 nanowires array on nickel foam for high performance supercapacitor. Funct Mater Lett 14:2151005

    Article  CAS  Google Scholar 

  53. Dai S, Xi Y, Hu C et al (2013) KCu 7 S 4 nanowires and the Mn/KCu 7 S 4 nanostructure for solid-state supercapacitors. J Mater Chem A 1:15530–15534

    Article  CAS  Google Scholar 

  54. Wu H, Zhong Y, Tang Y et al (2022) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Energy Mater 5:419–430

    CAS  Google Scholar 

  55. Wang J, Liu Y, Fan Z et al (2019) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2:1–33

    Article  CAS  Google Scholar 

  56. Moon IK, Lee J, Ruoff RS et al (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:1–6

    Article  CAS  Google Scholar 

  57. Hu X-S, Shen Y, Zhang Y-T et al (2017) Synthesis of flower-like CuS/reduced graphene oxide (RGO) composites with significantly enhanced photocatalytic performance. J Alloy Compd 695:1778–1785

    Article  CAS  Google Scholar 

  58. Shen W, Zang J, Hu H et al (2020) Controlled synthesis of KCu7S4/rGO nanocomposites for electrochemical energy storage. Mater Design 195:108992

    Article  CAS  Google Scholar 

  59. Shao Y, El-Kady MF, Sun J et al (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118:9233–9280

    Article  CAS  Google Scholar 

  60. Liu T, Li YJI (2020) Addressing the Achilles’ heel of pseudocapacitive materials: Long-term stability. InfoMat 2:807–842

    Article  CAS  Google Scholar 

  61. Nian Y-R, Teng HJJoEC (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127

    Article  CAS  Google Scholar 

  62. Taberna P, Simon P, Fauvarque J-FJJotES (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292

    Article  CAS  Google Scholar 

  63. Gao T, Zhou Z, Yu J et al (2019) 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv Energy Mater 9:1802578

    Article  CAS  Google Scholar 

  64. Yao B, Chandrasekaran S, Zhang J et al (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470

    Article  CAS  Google Scholar 

  65. Yao B, Chandrasekaran S, Zhang H et al (2020) 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv Mater 32:1906652

    Article  CAS  Google Scholar 

  66. Ghosh K, Pumera MJN (2021) Free-standing electrochemically coated MoS x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale 13:5744–5756

    Article  CAS  Google Scholar 

  67. Zhao X, Liu B, Pan P et al (2021) Fabrication of reduced graphene oxide/manganese oxide ink for 3D-printing technology on the application of high-performance supercapacitors. J Mater Sci 56:8102–8114

    Article  CAS  Google Scholar 

  68. Li W, Li Y, Su M et al (2017) Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J Mater Chem A 5:16281–16288

    Article  CAS  Google Scholar 

  69. Yue Y, Liu N, Ma Y et al (2018) Highly self-healable 3D microsupercapacitor with MXene–graphene composite aerogel. ACS Nano 12:4224–4232

    Article  CAS  Google Scholar 

  70. Qi Z, Ye J, Chen W et al (2018) 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv Mater Technol 3:1800053

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Supported by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0640, No. 2020L0634), the Applied Basic Research Program Project of Shanxi Province (No.201901D211455), and the Taif University Researchers Supporting Project number (TURSP-2020/47), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peikang Bai or Yong Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• At 0.5 A/g, 3D printed rGO/KCu7S4 shows 815.83 F/g good capacitance retention.

• Printed rGO/KCu7S4 assembly capacitor shows 286 μWh/cm2 for the areal power density.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2359 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, F., Zhao, Z. et al. Direct ink printing reduced graphene oxide/KCu7S4 electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 5, 1516–1526 (2022). https://doi.org/10.1007/s42114-022-00488-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00488-1

Keywords

Navigation