Skip to main content

Advertisement

Log in

Viral disease of tomato crops (Solanum lycopesicum L.): an overview

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Global production of tomato has been hampered by the increased incidences of tomato viral disease. The high genetic heterogeneity of tomato plant viruses, because of their high mutation rates, has lead to ineffective control strategies and the fast spread of the viruses. Viruses utilize the resources in host plants for their replication. Therefore, identification and removal of the non-redundant proteins in the tomato plant based on the biological properties of the virus combined with an RNAi strategy may be a future control strategy. In this review, fourteen tomato viral diseases and their causal agents are reviewed and the control strategies for tomato viral diseases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdalla OA, Mohamed SA, Eraky AI, Fahmy FG (2015) Genetic comparison between coat protein gene of Alfalfa mosaic virus isolate infecting potato crop in Upper Egypt and worldwide isolates. Int J Virol 11:112–122

    CAS  Google Scholar 

  • Abudurexiti A, Adkins S, Alioto D et al (2019) Taxonomy of the order Bunyavirales: update 2019. Arch Virol 164:1949–1965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agirrezabala X, Méndez-López E, Lasso G, Sánchez-Pina MA, Aranda M, Valle M (2015) The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife 4:e11795

    PubMed  PubMed Central  Google Scholar 

  • Aguilar JM, Hernandez-Gallardo MD, Cenis JL, Lacasa A, Aranda MA (2002) Complete sequence of the Pepino mosaic virus RNA genome. Arch Virol 147(10):2009–2015

    CAS  PubMed  Google Scholar 

  • Al-Abrahim JS (2014) Molecular identification of Alfalfa Mosaic Virus isolated from naturally infected Alfalfa (Medicago sativa) crop in Saudi Arabia. Int J Plant Animal Environ Sci 4(1):348–352

    Google Scholar 

  • Alfaro-Fernández A, Córdoba-Sellés C, Cebrián-Micó MC, Font M, Juárez V, Median A, Lacasa A, Sánchez-Navarro JA, Pallas V, Jordá-Gutiérrez C (2007) Advances in the study of tomato “Torrao” or “Cribado” syndrome. Boletin de Sanidad Vegetal Plagas 33(1):99–109

    Google Scholar 

  • Alfaro-Fernández A, Córdoba-Sellés MC, Herrera-Vásquez JA, Cebrián MC, Jordá C (2009) Transmission of Pepino mosaic virus by the fungal vector Olpidium virulentus. J Phytopathol 158(4):217–226

    Google Scholar 

  • Almeida R, Allshire RC (2005) RNA Silencing and genome regulation. Trends Cell Biol 15(5):251–258

    CAS  PubMed  Google Scholar 

  • Almeida JEM, dos Reis FA, PdeSG D, Lucas MA, Alencar NE (2018) Procedure for detecting tobamovirus in tomato and pepper seeds decreases the cost analysis. Plant Prot 77:590–598

    Google Scholar 

  • Al-Saleh MA, Amer MA (2013) Biological and molecular variability of Alfafa mosaic virus affecting alfafa crop in Riyadh region. Plant Pathol J 29(4):410–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amari K, Gonzalez-Ibeas D, Gomez P, Sempere RN, Sanchez-Pina MA, Aranda MA (2008) Tomato torrado virus is transmitted by Bermisia tabaci and infects pepper and eggplant in addition to tomato. Dis Notes 92(7):1139

    CAS  Google Scholar 

  • Ammara UE, Mansoor S, Sæed M, Amin I, Briddon RW, Al-Sadi AM (2015) RNA interference-based resistance in transgenic tomato plants against Tomato yellow leaf curl virus-Oman (TYLCV-OM) and its associated betasatellie. Virol J 12:38

    PubMed  PubMed Central  Google Scholar 

  • Andou T, Yamaguchi A, Kawano S, Kawabe K, Ueda S, Onuki M (2010) Ageratum yellow vein virus isolated from tomato plants with leaf curl on Ishigaki Island, Okinawa. Jpn J Gen Plant Pathol 76(4):287–291

    CAS  Google Scholar 

  • Aparicio F, Aramburu J, Soler S, Galipienso L, Nuez F, Pallás V, López C (2009) Immunodiagnosis of Parietaria mottle virus in tomato crops using a polyclonal antiserum against its coat protein expressed in a bacterial system. J Phytophathol 157:511–513

    CAS  Google Scholar 

  • Aparicio F, Aramburu J, Herranz MC, Pallas V, Lopez C (2018) Parietaria mottle virus: a potential threat for tomato crops? Acta Hortic 1207:261–268

    Google Scholar 

  • Arinaitwe W, Ochwo-ssemakula M, Mbewe WK, Sseruwagi P, Kyamanywa S, Erbaugh M, Miller S, Qu F (2018) Molecular characteristics of Tomato mosaic virus infecting tomato in Uganda. Afr Crop Sci J 26:433–445

    Google Scholar 

  • Artelli GP, Russo M, Rubbino M (2001) Tomato bushy stunt virus A.A.B. Descript Plant Virus 71:382

    Google Scholar 

  • Badillo-Vargas IE, Baker CA, Turechek WW, Frantz G, Mellinger HC, Funderburk JE, Adkins S (2016) Genomic and biological characterization of Tomato necrotic streak virus, a novel subgroup 2 ilarvirus infecting tomato in Florida. Plant Dis 6:1046–1053

    Google Scholar 

  • Barker RF, Jarvis NP, Thompson DV, Loesch-Fries LS, Hall TC (1983) Complete nucleotide sequence of alfalfa mosaic virus RNA3. Nucleic Acids Res 11(9):2881–2891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batuman O, Miyao G, KuoY-W C-F, Davis RM, Gilbertson RL (2009) An outbreak of a necrosis disease of tomato in California in 2008 was caused by a new ilarvirus species related to Parietaria mottle virus. Plant Dis 93:546

    CAS  PubMed  Google Scholar 

  • Baulcombe DC (1996) RNA as a target and an initiator of posttranscriptional gene silencing in transgenic plants. Plant Mol Biol 32:79–88

    CAS  PubMed  Google Scholar 

  • Bellardi MC, Benni A (2005) The occurrence of alfalfa mosaic virus in Symphytum tuberosum. J Plant Pathol 87(1):75–76

    Google Scholar 

  • Bennett CW (1971) The Curly Top Disease of Sugar Beet and Other Plants. Am Phytopa Soc 7:0569–6992

    Google Scholar 

  • Biswa KK, Kumari S, Tarafdar A (2011) Present scenario of management strategies of plant viral diseases. Insect Pest and Disease Management. https://www.academia.edu/8538737/Present_scenario_of_management_strategies_of_plant_viral_diseases. Accessed 20 Mar 2019

  • Blystad D-R, van der Vlugt R, Alfaro-Fernandez A et al (2015) Host range and symptomatology of Pepino mosaic virus occurring in Europe. Eur J Plant Pathol 143:43–56

    Google Scholar 

  • Bolok Yazdi HR, Heydarnejad J, Massumi H (2008) Genome characterization and genetic diversity of Beet curly top Iran virus: a geminivirus with a novel nonanucleotide. Virus Genes 36:539–545

    Google Scholar 

  • Bratsch S, Grinstead S, Creswell T, Ruhl GE, Mollov D (2019) Characterization of Tomato necrotic spot virus, a subgroup 1 ilarvirus causing necrotic foliar, stem, and fruit symptoms in tomatoes in the United States. Plant Dis 103(6):1943–7692

    Google Scholar 

  • Caciagli P, Boccardo G, Lovisolo O (1989) Parietaria mottle virus, a possible new ilarvirus from Parietaria officinalis (Urticaceae). Plant Pathol 38:577–584

    Google Scholar 

  • Candemir F, Kutluk-Yilmaz ND, Gülser C (2012) The effect of tobacco waste application on Tobacco mosaic virus (TMV) concentration in the soil. ŽemdirbystėAgriculture 99(1):99–104

    Google Scholar 

  • Cantu-Iris M, Pastor-Palacios G, Mauricio-Castillo JA et al (2019) Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: clues to comprehend the complex regulation of late genes. PLoS ONE 14(1):e0210485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capote N, Pastrana AM, Aguado AS, Anchez-Torres P (2012) Molecular tools for detection of plant pathogenic fungi and fungicide resistance. In: Cumagun CJR (ed) Plant pathol. InTech, London, pp 151–202

    Google Scholar 

  • Cerkauskas R (2005) Potato virus X (PVX). AVRDC The World Vegetable Center Fact Sheet. https://203.64.245.61/web_crops/tomato/PVX.pdf.

  • Chiemsombat P, Srikamphung B, Yule S (2018) Begomoviruses associated to pepper Yellow leaf curl disease in Thailand. J Agric Res 3:000183

    Google Scholar 

  • Codoner FM, Elena SF (2006) Evolutionary relationships among members of the Bromoviridae deduced from whole proteome analysis. Arch Virol 151:299–307

    CAS  PubMed  Google Scholar 

  • Cornelissen BJ, Brederode FT, Moormann RJ, Bol JF (1983a) Complete nucleotide sequence of Alfalfa mosaic virus RNA 1. Nucleic Acids Res 11(5):1253–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornelissen BJ, Brederode FT, Veeneman GH, van Boom JH, Bol JF (1983b) Complete nucleotide of Alfalfa mosaic virus RNA 2. Nucleic Acids Res 11(10):3019–3025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung BYW, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105(15):5897–5902

    CAS  PubMed  Google Scholar 

  • Dalmon A, Fabre F, Guilbaud L, Lecoq H, Jacquemond M (2009) Comparative whitefly transmission of Tomato chlorosis virus and Tomato infectious chlorosis virus from single or mixed infections. Plant Pathol 58(2):221–227

    Google Scholar 

  • De Avila AC, de Haan P, Kormelink R, Resende RO, Goldbach RW, Peters D (1993) Classification of tospoviruses based on phylogeny of nucleoprotein gene-sequences. J Gen Virol 74:153–159

    PubMed  Google Scholar 

  • De Haan P, Wagemakers L, Peters D, Goldbach R (1990) The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007

    PubMed  Google Scholar 

  • De Haan P, Kormelink R, de Oliveira RR, van Poelwijk F, Peters D, Goldbach R (1991) Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216

    PubMed  Google Scholar 

  • De Moraes LA, Muller C, de Freitas Bueno RCO et al (2018) Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil. Sci Rep 8:14589

    PubMed  PubMed Central  Google Scholar 

  • Diaz-Pendon JA, Sanchez-Campos S, Fortes IM, Moriones E (2019) Tomato yellow leaf curl Sardinia virus, a Begomovirus species involving by mutation and recombination: A challenge for virus control. Viruses 11(1):45

    CAS  PubMed Central  Google Scholar 

  • Dietzgen RG, Mann KS, Johnson KN (2016) Plant virus-insect vector interactions: current and potential future research directions. Viruses 8(11):303

    PubMed Central  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10(9):632–644

    CAS  PubMed  Google Scholar 

  • Dombrovsky A, Smith E (2017) Seed transmission of Tobamoviruses: Aspects of global disease distribution. Adv Seed Biol 12:234–260

    Google Scholar 

  • Dong JH, Cheng XF, Yin YY, Fang Q, Ding M, Li TT, Zhang LZ, Su XX, McBeath JH, Zhang ZK (2008) Characterization of Tomato zonate spot virus, a new Tospovirus in China. Arch Virol 153(5):855–864

    CAS  PubMed  Google Scholar 

  • Donoso A, Valenzuela S (2018) In-field molecular diagnosis of plant pathogen: recent trends and future perspectives. Plant Pathol 67(4):1451–1461

    Google Scholar 

  • Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathol 60:54–69

    Google Scholar 

  • Edwardson JR (1974) Some properties of the Potato virus Y group. Florida Agriculture Experiment Station Monograph Series 4:225

    Google Scholar 

  • EFSA Panel on Plant Health (PLH) (2012) Scientific Opinion on the pest categorisation of the tospoviruses. EFSA J 10(7):2772

    Google Scholar 

  • Fahim M, Din N (2017) Evaluation of tomato genotypes against Tomato mosaic virus (ToMV) and its effect on yield contributing parameters. Pal J Bot 49:1585–1592

    Google Scholar 

  • FAOSTAT (2019) Statistics Division of the Food and Agricultural Organization of the United Nations. https://www.fao.org/faostat/en/#data/QC. Accessed 12 Feb 2019.

  • Fauquet MC, Mayo MA (1999) Abbreviations for plant virus names. Arch Virol 144(6):1249–1273

    CAS  PubMed  Google Scholar 

  • Fidan H, Adak NA, Konuksal A, Akerzurumlu E, Yılmaz MA (2012) Occurrence of Alfalfa mosaic virus (AMV) diseases on potato crops in Northern Cyprus. Acta Hort (ISHS) 960:341–346

    Google Scholar 

  • Finetti-Sialer M, Gallitelli D (2003) Complete nucleotide sequence of Pelargonium zonate spot virus and its relationship with the family Bromoviridae. J Gen Virol 84:3143–3151

    CAS  PubMed  Google Scholar 

  • Gadhave KR, Dutta B, Coolong T, Srinivasan R (2019) A non-persistent aphid-transmitted Potyvirus differentially alters the vector and non-vector biology through host plant quality manipulation. Sci Rep 9(1):2503

    PubMed  PubMed Central  Google Scholar 

  • Gallitelli D (1982) Properties of tomato isolate of Pelargonium zonate spot virus. Ann Appl Biol 100(3):457–466

    Google Scholar 

  • García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186

    PubMed  Google Scholar 

  • Garcia-Ruiz H (2018) Susceptibility genes to plant viruses. Viruses 10(9):484

    PubMed Central  Google Scholar 

  • Geetanjali AS, Kumar R, Srivasta PS, Mandal B (2011) Biological and molecular characterization of two distinct tomato strains of Cucumber mosaic virus based on complete RNA-3 genome and subgroup specific diagnosis. Indian J Virol 22(2):117–126

    Google Scholar 

  • Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223

    CAS  PubMed  Google Scholar 

  • Gibson KE (1967) Possible incidence of curly top in Iran: A new record. Plant Dis Rep 51:976–977

    Google Scholar 

  • Gerik JS, Duffus JE, Perry R, Stenger DC, Van Maren AF (1990) Etiology of tomato plant decline in California desert. Phytopathol 80:1352–1356

    Google Scholar 

  • Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2(1):67–93

    CAS  PubMed  Google Scholar 

  • Giolitti F, Bejerman N, Nome C, Visintin G, de Breuil S, Lenardon S (2014) Biological and molecular characterization of an isolate of Pelargonium zonate spot virus infecting sunflower in Argentina. J Plant Pathol 96(1):189–194

    Google Scholar 

  • Guo Y, Liu B, Ding Z, Li G, Liu M, Zhu D, Sun Y, Dong S, Lou Z (2017) A distinct mechanism for the formation of the ribonucleoprotein complex of the Tomato spotted wilt virus. J Virol 91:e00892–e917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Kwon S-Y, Kim ST (2018) An insight into the Tomato spotted wilt virus (TSWV), tomato and thrips interaction. Plant Biotech Rep 12(3):157–163

    Google Scholar 

  • Gutierrez C (2002) Strategies for geminivirus DNA replication and cell cycle interference. Physiol Mol Plant P60(5):219–230

    Google Scholar 

  • Hafez ESE, Saber GA, Fattouh FA (2010) Tomato bushy stunt virus (TBSV) infecting Lycopersicum esculentum. Z Naturforsch 65(9–10):619–626

    CAS  Google Scholar 

  • Harvey M, Quilley S, Beynon H (2002) Exploring the Tomato. Transformations of nature, society, and economy. Edgar, Cheltenham

    Google Scholar 

  • Hanssen IM, Thomma BPHJ (2010) Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol 11(2):179–189

    CAS  PubMed  Google Scholar 

  • Hanssen IM, Paeleman A, Wittemans LPF, Goen K, Lievens B, Bragard C, Vanachter ACRC, Thomma BPHJ (2008) Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol 121(2):131–146

    Google Scholar 

  • Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanachter ACRC, Thomma BPHJ (2009) Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol 58(3):450–460

    CAS  Google Scholar 

  • Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. America Phytopa Soc 23(5):539–548

    CAS  Google Scholar 

  • Hasiów-Jaroszewska B, Budzyńska D, Rymelska N, Korpys P, Borodynko-Filas N (2018) Phylogenetic evidence of natural reassortants in the Cucumber mosaic virus population in Poland. Can J Plant Pathol 40(4):1715–2992

    Google Scholar 

  • Hassan I, Orilio AF, Fiallo-Olive E, Briddon RW, Navas-Castillo J (2016) Infectivity, effects on helper viruses and whitefly transmission of the deltasatellites associated with sweepoviruses (genus Begomovirus, family Geminiviridae). Sci Rep 6:30204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassani-Mehraban A, Saaijer J, Peters D, Goldbach R, Kormelink R (2005) A new tomato-infecting Tospovirus from Iran. Phytopathol 95:852–858

    CAS  Google Scholar 

  • Hearne PQ, Knorr DA, Hillman BI, Morris TJ (1990) The complete genome structure and synthesis of infectious RNA from clones of tomato bushy stunt virus. Virol 177(1):141–151

    CAS  Google Scholar 

  • Heinlein M (2015) Plant virus replication and movement. Virol 479–480:657–671

    Google Scholar 

  • Hosseini S (2010) Interaction between the chromatin of Beet curly top virus and TFL2 protein. Master thesis, Swedish University of Agricultural Sciences.

  • Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of Geminivirus (Begomovirus) diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34:008–018

    Google Scholar 

  • Ishibashi K, Ishikawa M (2016) Replication of tobamovirus RNA. Annu Rev Phytopathol 54:55–78

    CAS  PubMed  Google Scholar 

  • Islam W (2017) Management of plant virus diseases; farmer’s knowledge and our suggestions. Hosts Viruses 4(2):28–33

    CAS  Google Scholar 

  • Jacquemond M (2012) Cucumber mosaic virus. Adv Virus Res 84:440–491

    Google Scholar 

  • Janssen D, Saez E, Segundo E, Martín E, Gil F, Cuadrado IM (2005) Capsicum annum—a new host of Parietaria mottle virus in Spain. Plant Pathol 54(4):567

    Google Scholar 

  • Jaspars EMJ (1985) Interaction of alfalfa mosaic virus nucleic acid and protein. In: Davies JW (ed) Molecular plant virology. CRC Press, New York, pp 155–221

    Google Scholar 

  • Jeger M, Bragard C, Caffier D et al (2017) Scientific Opinion on the pest categorisation of Beet curly top virus (non-EU isolates). EFSA J 15:4998

    Google Scholar 

  • Jiao X, Gong H, Liu X, Xie Y, Zhou X (2013) Etiology of Ageratum yellow vein diseases in South China. Plant Dis 97(11):1497–1503

    CAS  PubMed  Google Scholar 

  • Jones RAC (2016) Future scenarios for plant virus pathogens as climate change progresses. Adv Virus Res 95:87–147

    CAS  PubMed  Google Scholar 

  • Jones RAC, Koenig R, Lesemann DE (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol 94(1):61–68

    CAS  Google Scholar 

  • Kenyon L, Kumar S, Tsai W-S, da Hughes J (2014) Virus diseases of peppers (Capsicum spp.) and their control. Adv Virus Res 90:297–354

    PubMed  Google Scholar 

  • Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8(3):173–184

    CAS  PubMed  Google Scholar 

  • Kim J-H, Kim Y-S, Jang S-W, Jeon Y-H (2013) Complete genome sequence of Tomato spotted wilt virus from paprika in Korea. Int J Phyto 2(3):121–136

    Google Scholar 

  • King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Potexvirus, in virus taxonomy, classification and nomenclature of viruses. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, UK, pp 912–915

    Google Scholar 

  • Kiss ZA, Medina V, Falk BW (2013) Crinivirus replication and host interactions. Front Microbiol 4:1–11

    Google Scholar 

  • Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R (1992) The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73:2795–2804

    CAS  PubMed  Google Scholar 

  • Krenz B, Bronikowski A, Lu X, Ziebell H, Thompson JR, Perry KL (2015) Visual monitoring of Cucumber mosaic virus infection in Nicotiana benthamiana following transmission by the aphid vector Myzus persicae. Gen Virol 96:2904–2912

    CAS  Google Scholar 

  • Lam N, Creamer R, Rascon J, Belfon R (2009) Characterization of a new curtovirus, Pepper yellow dwarf virus, from chile pepper and distribution in weed hosts in New Mexico. Arch Virol 154(3):429–436

    CAS  PubMed  Google Scholar 

  • Lapidot M, Guenoune-Gelbart D, Leibman D, Holdengreer V, Davidovitz M, Machbash Z, Klieman-Shoval S, Cohen S, Gal-On A (2010) Pelargonium zonate spot virus is transmitted vertically via seed and pollen in tomato. Phytopathol 100(8):798–804

    CAS  Google Scholar 

  • Lee Y-J, Kil E-J, Kwak H-R, Kim M, Seo J-K, Lee S, Choi H-S (2018) Phylogenetic characterization of Tomato chlorosis virus population in Korea: evidence of reassortment between isolates from different origins. Plant Pathol J 34(3):199–207

    PubMed  PubMed Central  Google Scholar 

  • Li YY, Wang CL, Xiang D, Li RH, Liu Y, Li F (2014) First report of Tomato mottle mosaic virus infection of pepper in China. Plant Dis 98:1447

    CAS  PubMed  Google Scholar 

  • Li Y, Wang Y, Hu J, Xiao L, Tan G, Lan P, Liu Y, Li F (2017) The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate. Virol J 14:15

    PubMed  PubMed Central  Google Scholar 

  • Liu HW, Luo LX, Li JQ, Liu PF, Chen XY, Hao JJ (2014) Pollen and seed transmission of Cucumber green mottle mosaic virus in cucumber. Plant pathol 63(1):72–77

    CAS  Google Scholar 

  • Loebenstein G, Berger PH, Brunt AA, Lawson RH (2001) Virus and virus-like diseases of potatoes and production of seed potatoes. Kluwer Academic, Netherlands

    Google Scholar 

  • Lozano G, Moriones E, Navas-Castillo J (2004) First report of sweet pepper (Capsicum annuum) as a natural host plant for Tomato chlorosis virus. Plant Dis 88:224

    CAS  PubMed  Google Scholar 

  • Luis-Arteaga M, Rodriguez-Cerezo E, Fraile A, Sae E, Garcia-Arenal F (1996) Different Tomato bushy stunt virus strains that cause disease out breaks in solanaceous crops in Spain. Phytopathol 86:535–542

    CAS  Google Scholar 

  • Luria N, Smith E, Reingold V et al (2017) A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE 12:e0170429

    PubMed  PubMed Central  Google Scholar 

  • Mahmoudieh MK, Mohamad Roff MN, Harikrishna JA, Othman RY (2016) Ageratum yellow vein virus-Malaysia [Malaysia-Tomato leaf curl- 2011] genome has a betasatellite and is a begomovirus infecting Solanum lycopersicum in Malaysia. Unpublished.

  • Mahmoudieh M, Noor MRM, Harikrishna JA, Othman RY (2019) Tomato Solanum lycopersicum expressing the overlapping regions of three begomovirus genes exhibit resistance to Ageratum yellow vein Malaysia virus. Physiol Mol Plant P 108:101425

    CAS  Google Scholar 

  • Mallor C, Luis-Arteaga M, Cambra MA, Fernandez-Cavada S (2002) Natural infection of field-grown borage (Borago officinalis) by Alfalfa mosaic virus in Spain. Plant Dis 86(6):698

    CAS  PubMed  Google Scholar 

  • Martelli GP, Gallitelli D, Russo M (1988) Tombusviruses. Plant Viruses 3:13–72

    Google Scholar 

  • Martinelli F, Scalenghe R, Davino S et al (2014) Advanced methods of plant disease detection a review. Agron Sustain Dev 35(1):1–25

    Google Scholar 

  • Martinez F, Rodrigo G, Aragones V, Ruiz M, Lodewijk I, Fernandez U, Elena SF, Daros J-A (2016) Interaction network of Tobacco etch potyvirusNla protein with the host proteome during infection. BMC Genom 17:87

    Google Scholar 

  • Mayer A (1886) Concerning the mosaic disease of tobacco. Version-stn, Landwirtsch

    Google Scholar 

  • McMicheal LA, Persley DM, Thomas JE (2002) A new Tospovirus serogroup IV species infecting capsicum and tomato in Queensland Australia. Australas Plant Pathol 31(3):231–239

    Google Scholar 

  • Melzer MJ, Tripathi S, Matsumoto T, Keith L, Sugano J, Borth WB, Wieczorek A, Gonsalves D, Hu JS (2012) Tomato Spotted Wilt. Plant Dis 81:1220

    Google Scholar 

  • Mochizuki T, Ohki ST (2012) Cucumber mosaic virus: viral genes as virulence determinants. Mol Plant Pathol 13(3):217–225

    CAS  PubMed  Google Scholar 

  • Moreno-Pérez MG, Pagán I, Aragón-Caballero L, Cáceres F, Fraile A, García-Arenal F (2014) Ecological and genetic determinants of Pepino mosaic virus emergence. J Virol 88:3359–3368

    PubMed  PubMed Central  Google Scholar 

  • Moriones E, Navas-Castillo J, Díaz-Pendón JA (2011) Emergence of begomovirus diseases. In: Caranta C, Aranda MA, Tepfer M, López-Moya JJ (eds) Caister Academic: Norfolk. VA, USA, pp 301–320

    Google Scholar 

  • Moyle R, Pretorius L-S, Shuey LS, Nowak E, Schenk PM (2018) Analysis of the complete genome sequence of Cucumber mosaic virus strain K. Genome Announc 6(7):e00053–e118

    PubMed  PubMed Central  Google Scholar 

  • Nagy PD (2016) Tombusvirus-host interactions: co-opted evolutionarily conserved host factors take center court. Annu Rev Virol 3:491–515

    CAS  PubMed  Google Scholar 

  • Nasir M, Idrees M, Zaidi SSH, Chisti SA, Ayub M, Aamrao L (2016) Tomato bushy stunt virus and tomato advanced lines/cultivars. Pak J Phyto 28(2):283–286

    Google Scholar 

  • Navas-Castillo J, Camero R, Bueno M, Moriones E (2000) Severe yellowing outbreaks in tomato in Spain associated with infections of Tomato chlorosis virus. Plant Dis 84(8):835–837

    CAS  PubMed  Google Scholar 

  • Nawaz HH, Umer M, Bano S, Usmani A, Naseer M (2014) A research review on Tomato bushy stunt virus disease complex. J Nat Sci Res 4(5):2224–3186

    Google Scholar 

  • Noël P, Hance T, Bragard C (2014) Transmission of the Pepino mosaic virus by whitefly. Eur J Plant Pathol 138:23–27

    Google Scholar 

  • Nusayr T, Creamer R (2017) A novel groel gene from the endosymbiont of beet leafhopper, Candidatus Sulcia muelleri. Afr J Microbiol Res 11:1586–1599

    Google Scholar 

  • Oliver JE, Whitfield AE (2016) The genus Tospovirus: emerging bunyaviruses that threaten food security. Annu Rev Virol 3:101–124

    CAS  Google Scholar 

  • Otsuki Y, Takebe I (1976) Double infection of isolated tobacco mesophyll protoplasts by unrelated viruses. J Gen Virol 30(3):309–316

    Google Scholar 

  • Palukaitis P, Garcia-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    CAS  PubMed  Google Scholar 

  • Palukaitis P, Roossinck MJ, Dietzgen RG, Francki RIB (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348

    CAS  PubMed  Google Scholar 

  • Pallas V, Aparicio V, Herranz MC, Sanchez-Navarro JA, Scott SW (2013) The molecular biology of ilarviruses. Adv Virus Res 87:139–181

    CAS  PubMed  Google Scholar 

  • Pallas V, Sanchez-Navarro JA, James D (2018) Recent advances on the multiplex molecular detection of plant viruses and viroids. Front Microbiol 9:2087

    PubMed  PubMed Central  Google Scholar 

  • Parrella G (2002) First report of Parietaria mottle virus in Mirabilis jalapa. Plant Pathol 51(3):401

    Google Scholar 

  • Panagopoulos CG (2000) Diseases of vegetable crops. In: Vegetable disease, Stamoulis, Athens, pp 15–189 (In Greek).

  • Perez-Quintero A, Neme R, Zapata A, Lopez C (2010) Plant microRNAs and their role in defense against viruses: A bioinformatics approach. BMC Plant Biol 10:138

    PubMed  PubMed Central  Google Scholar 

  • Pratap D, Kumar S, Raj SK (2008) First molecular identification of a Cucumber mosaic virus isolate causing shoestring symptoms on tomato in India. Australas Plant Dis Notes 3(1):57–58

    CAS  Google Scholar 

  • Pumplin N, Voinnet O (2013) RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nat Rev Microbiol 11(11):745–760

    CAS  PubMed  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free arabidopsis plants. Mol Plant Pathol 17(8):1276–1288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quacquarelli A, Gallitelli D (1979) Three virus diseases of Pelargonium in Apulia. Phytopathol Mediterr 18:61–70

    Google Scholar 

  • Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014) Enhancing the human-promoting effects of tomato fruit for biofortified food. Hindawi Pub Corp Mediators Inflamm 40:1–6

    Google Scholar 

  • Ramasso E, Roggero P, Dellavalle G, Lisa V (1997) Necrosi apicale del pomodoro causata da un ilarvirus. Inftore Fitopato l1: 71-77

  • Rashid TS, Sijam K, Awla HK, Saud HM, Kadir J (2016) Pathogenicity assay and molecular identification of fungi and bacteria associated with diseases of tomato in Malaysia. Am J Plant Sci 7(6):949–957

    CAS  Google Scholar 

  • Reingold V, Lachman O, Belausov E, Koren A, Mor N, Dombrovsky A (2016) Epidemiological study of Cucumber green mottle mosaic virus in greenhouses enables reduction of disease damage in cucurbit production. Ann Appl Biol 168(1):29–40

    CAS  Google Scholar 

  • Rojas A (2004) A complex of begomoviruses affecting tomato crops in Nicaragua. Ph.D. thesis, University of Agricultural Sciences

  • Rojas MR, Gilbertson RL (2008) Chapter 3, Emerging plant viruses: a diversity of mechanisms and opportunities. In: Roossinck MJ (ed) Plant Virus Evolution. Springer, Berlin, pp 27–51

    Google Scholar 

  • Rojas M, Hagen C, Lucas W, Gilbertson R (2005) Exploiting chinks in the plant’s armor: Evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    CAS  PubMed  Google Scholar 

  • Rojas MR, Macedo MA, Maliano MR et al (2018) World management of geminiviruses. Annu Rev Phytopathol 56:637–677

    CAS  PubMed  Google Scholar 

  • Rondon SI, Roster MS, Hamlin LL, Green KJ, Karasev AV, Crosslin JM (2016) Characterization of Beet curly top virus Strains circulating in Beet Leafhoppers (Hemiptera: Cicadellidae) in Northeastern Oregon. Plant Dis 100:8

    Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Role of plant small RNAs in biotic stress responses. Annu Rev Biol 60:485–510

    CAS  Google Scholar 

  • Sanfaçon H (2017) Grand challenge in plant virology: understanding the impact of plant viruses in model plants, in agricultural crops and in complex ecosystems. Front Microbiol 8:860

    PubMed  PubMed Central  Google Scholar 

  • Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T (2009) Secoviridae: A proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154(5):899–907

    PubMed  Google Scholar 

  • Scholthof HB, Morris TJ, Jackson AO (1993) The capsid protein gene to tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. Mol Plant Microbe In 6:309–322

    CAS  Google Scholar 

  • Scholthof HB, Scholthof KBG, Jackson AO (1995) Tomato bushy stunt virus spread is regulated by two nested genes that function in cell-to-cell movement and host-dependent systemic invasion. Virol 213(2):425–438

    CAS  Google Scholar 

  • Scholthof KG, Adkins S, Czosnek H et al (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12(9):938–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scorza R, Callahn A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10(3):201–209

    CAS  PubMed  Google Scholar 

  • Sharma P, Sahu AK, Verma RK, Mishra R, Choudhary DK, Gaur RK (2014) Current status of Potyvirus in India. Arch Phytopathol Plant Protect 47(8):906–918

    CAS  Google Scholar 

  • Shipp JL, Buitenhuis R, Stobbs L, Wang K, Kim WS, Ferguson G (2008) Vectoring of Pepino mosaic virus by bumble-bees in tomato greenhouses. Ann Appl Biol 153(2):149–155

    Google Scholar 

  • Sigvald R (1985) Mature-plant resistance of potato against potato virus Yo (PVYO). Potato Res 28:135–143

    Google Scholar 

  • Smith KM (1931) On the composite nature of certain potato virus diseases of themosaic group as revealed by the use of plant indicators and selective methods of transmission. Proc R Soc 109:251

    Google Scholar 

  • Smith KM (1935) Strains of Tomato bushy stunt virus. Ann Appl Biol 22:731–741

    Google Scholar 

  • Soto MJ, Gilbertson RL (2003) Distribution and rate of movement of the curtovirusBeet mild curly top virus (family Geminiviridae) in the beet leafhopper. Phytopathol 93(4):478–484

    Google Scholar 

  • Srivastava A, Kumar S, Raj SK (2015) Molecular characterization of a begomovirus and betasatellite causing yellow vein net disease of Ageratum houstonianum. Plant Dis 99:627–631

    CAS  PubMed  Google Scholar 

  • Suresh LM et al (2017) Tomato disease field guide. Seminis Vegetable Seeds. https://seminis-us.com/resources/disease-guides/tomatoes/. Accessed 14 Apr 2020

  • Trigiano TN, Windham MT, Windham AS (2003) Plant pathology: concepts and laboratory exercises. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Tsai W, Shih S, Green S, Hanson P, Liu H (2004) First report of the occurrence of Tomato chlorosis virus and Tomato infectious chlorosis virus in Taiwan. Plant Dis 88:311

    CAS  PubMed  Google Scholar 

  • Tsedaley B (2015) A review paper on Potato virus Y (PVY) biology, economic importance and its management. J Biol Agricul Healthcare 5(9):2224–3208

    Google Scholar 

  • Tsitsigiannis DI, Antoniou PP, Tjamos SE, Paplomatas EJ (2008) Major diseases of tomato, pepper and eggplant in greenhouses. Eur J Plant Sci Biotech 2:106–124

    Google Scholar 

  • Turina M, Ricker MD, Lenzi R, Masenga V, Ciuffo M (2007) A severe disease of tomato in the Culiacan area (Sinaloa, Mexico) is caused by a new picorna-like viral species. Plant Dis 91:932–941

    CAS  PubMed  Google Scholar 

  • Turina M, Kormelink R, Resende RO (2016) Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54:347–371

    CAS  PubMed  Google Scholar 

  • Usha Rani T, Laxmi Devi V, Jalali S, Krishna Reddy M (2009) Molecular characterization and complete nucletide sequence of Tobacco streak virus infecting pumpkin in India. Unpublished.

  • Valleau WD, Johnson EM (1928) Some virus diseases of tobacco in Kentucky. Phytopathol 18:132–133

    Google Scholar 

  • Van der Vlugt RAA, Stijger CCMM, Verhoeven JTJ, Lesemann DE (2000) First report of Pepino mosaic virus on tomato. Plant Dis 84:103

    PubMed  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: A serious threat to crop production. Ann Appl Biol 142(2):145–164

    CAS  Google Scholar 

  • Verbeek M, Dullemans AM, van den Heuvel JFJM, Maris PC, van der Vlugt RAA (2007) Identification and characterisation of Tomato torrado virus, a new plant picorna-like virus from tomato. Arch Virol 152(5):881–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek M, Dullemans AM, van den Heuvel JFJM, Maris PC, van der Vlugt RAA (2008) Tomato marchitez virus, a new plant picorna-like virus from tomato related to Tomato torrado virus. Arch Virol 153:127–134

    CAS  PubMed  Google Scholar 

  • Verbeek M, van Bekkum PJ, Dullemans AM, van der Vlugt RAA (2013) Torradoviruses are transmitted in a semi-persistent and stylet-borne manner by three whitefly vectors. Virus Res 186:55–60

    PubMed  Google Scholar 

  • Verchot-Lubicz J, Chang-Ming Y, Bamunusinghe D (2007) Molecular biology of potexviruses: recent advances. J Gen Virol 88:1643–1655

    CAS  PubMed  Google Scholar 

  • Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127:625–631

    Google Scholar 

  • Vovlas C, Gallitelli D, Conti M (1989) Preliminary evidence for an unusual mode of transmission in the ecology of Pelargonium zonate spot virus (PZSV). 4th Plant Virus Epidemiology Workshop. France, Montpellier, pp 302–305

    Google Scholar 

  • Wan J, Basu K, Mui J, Vali H, Zheng H, Laliberte JF (2015) Ultrastructural characterization of turnip mosaic virus-induced cellular rearrangements reveals membrane-bound viral particles accumulating in vacuoles. J Virol 89:12441–12456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M-B, Masuta C, Smith NA, Shimura H (2012) RNA silencing and plant viral disease. America Phytopa Soc 25:1275–1285

    CAS  Google Scholar 

  • Webster CG, Reitz SR, Perry KL, Adkins S (2011) A natural MRNA reassortant arising from two species of plant- and insect-infecting bunyaviruses and comparison of its sequence and biological properties to parental species. Virol 413:216–225

    CAS  Google Scholar 

  • Whitfield AE, Kumar NKK, Rotenberg D, Ullman DE, WymanEA ZC, Willis DK, German TL (2008) A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathol 98:45–50

    CAS  Google Scholar 

  • Wintermantel WM (2004) Emergence of greenhouse whitefly (Trialeurodes vaporariorum) transmitted criniviruses as threats to vegetable and fruit production in North America. APSnet Feature Articles. https://doi.org/10.1094/APSnetFeature-2004-0604

    Article  Google Scholar 

  • Wintermantel WM, Wisler GC (2006) Vector specificity, host range and genetic diversity of Tomato chlorosis virus. Plant Dis 90:814–819

    CAS  PubMed  Google Scholar 

  • Wintermantel WM, Wisler GC, Anchleta AG, Liu H-Y, Karasev AV, Tzanetakis IE (2005) The complete nucleotide sequence and genome organization of tomato chlorosis virus. Arch of Virol 150(11):2287–2298

    CAS  Google Scholar 

  • Wisler GC, Duffus JE, Lui HY, Li RH (1998) Ecology and Epidemiology of whitefly transmitted closteroviruses. Plant Dis 82(3):270–280

    CAS  PubMed  Google Scholar 

  • Zerbini F, Briddon RW, Idris A et al (2017) ICTV Virus Taxonomy Profile: Geminiviridae. J Gen Virol 98(2):131–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381

    CAS  PubMed  Google Scholar 

  • Zitikaite I, Samuitiene M (2008) Identification and some properties of Alfalfa mosaic alfamovirus isolated from naturally infected tomato crops. Biologija 54(2):83–88

    CAS  Google Scholar 

  • Zitter TA (1991) Potato virus Y and Tobacco etch virus. In: Jones JB, Jones JP, Stall RE, Zitter TA (eds) Compendium of Tomato diseases. American Phytopathological Society, St. Paul, MN, pp 36–38

    Google Scholar 

  • Zitter TA (2014) Diseases caused by viruses. In: Jones JB, Zitter TA, Momol TM, Miller SA (eds) Compendium of Tomato Diseases and Pests, 2nd edn. American Phytopathological Society, St. Paul, MN, pp 71–79

    Google Scholar 

  • Zitter TA, Provvidenti R (1984) Virus diseases and disorders of tomato. Cornell Coorper Exten Veg Hortic Crops Fact Sheet 735:40

    Google Scholar 

  • Zubair M, Zaidi SS, Shakir S, Farooq M, Amin I, Scheffler JA, Scheffler BE, Mansoor S (2017) Multiple begomoviruses found associated with cotton leaf curl disease in Pakistan in early 1990 are back in cultivated cotton. Sci Rep 7:680

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rofina Yasmin Othman or Chee How Teo.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, S.N., Taheri, S., Othman, R.Y. et al. Viral disease of tomato crops (Solanum lycopesicum L.): an overview. J Plant Dis Prot 127, 725–739 (2020). https://doi.org/10.1007/s41348-020-00330-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00330-0

Keywords

Navigation