Skip to main content

Advertisement

Log in

Lithium-ions uptake by MAX/graphene hybrid

  • Original Article
  • Published:
Graphene and 2D Materials Aims and scope Submit manuscript

A Correction to this article was published on 04 June 2022

This article has been updated

Abstract

Combining nanoparticles in well-designed architecture with complementary properties is an attractive strategy used for developing multi-functional, high-performance materials. Herein, to explore the mechanism of Li-ions uptake and storage potential of layered ternary carbides (MAX phases), we report on the Ti2SC and Ti3SiC2 with two-dimensional (2D)-reduced graphene oxide (rGO) that electrically connects MAX phase particles. The heterostructure formation was achieved through in-situ wet chemical processing. The method efficiently prevented restacking of rGO nanosheets, aggregation of MAX particles, and generated a porous heterostructure permeable for electrolyte. This facilitated the electrolyte transport and the access of ions to the electrode. In addition, there was a strong coupling effect between MAX phase compound and rGO in these hybrids. When tested as anodes for Li-ion batteries, the hybrids displayed high reversible capacity, very good rate performance, and excellent cycling stability. Specifically, the capacity of in-situ synthesized Ti2SC/rGO hybrid showed an increasing trend during cycling. After a few initial cycles, 576 mAh·g−1 was achieved after 500 charge/discharge cycles with a current of 400 mA·g−1. This work further demonstrates the Li-ion storage potential of MAX phases and suggests the need for further exploration of this large family of layered materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Liang B, Liu Y, Xu Y (2014) Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources 267:469–490. https://doi.org/10.1016/j.jpowsour.2014.05.096

    Article  CAS  Google Scholar 

  2. Yue L, Zhang W, Yang J, Zhang L (2014) Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim Acta 125:206–217

    Article  CAS  Google Scholar 

  3. Son Y, Sim S, Ma H, Choi M, Son Y, Park N, Cho J, Park M (2018) Exploring critical factors affecting strain distribution in 1D Silicon-Based nanostructures for Lithium-Ion battery anodes. Adv Mater 30:1705430. https://doi.org/10.1002/adma.201705430

    Article  CAS  Google Scholar 

  4. Park S, Zhao H, Ai G, Wang C, Song X, Yuca N, Battaglia VS, Yang W, Liu G (2015) Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in Lithium-Ion batteries. J Am Chem Soc 137:2565–2571. https://doi.org/10.1021/ja511181p

    Article  CAS  Google Scholar 

  5. Devic T, Lestriez B, Roué L (2019) Silicon electrodes for Li-Ion batteries. Addressing the challenges through coordination chemistry. ACS Energy Lett 4(2):550–557. https://doi.org/10.1021/acsenergylett.8b02433

    Article  CAS  Google Scholar 

  6. Li P, Hwang J, Sun Y (2019) Nano/Microstructured Silicon-Graphite composite anode for high-energy-density Li-Ion battery. ACS Nano 13:2624–2633. https://doi.org/10.1021/acsnano.9b00169

    Article  CAS  Google Scholar 

  7. Choi S, Cho Y, Kim J, Choi N, Song H, Wang G, Park S (2017) Mesoporous germanium anode materials for Lithium-Ion battery with exceptional cycling stability in wide temperature range. Small 13:1603045. https://doi.org/10.1002/smll.201603045

    Article  CAS  Google Scholar 

  8. Liu X, Liu Y, Harris MM, Li J, Wang K, Chen J (2018) Germanium nanoparticles supported by 3D ordered macroporous nickel frameworks as high-performance free-standing anodes for Li-ion batteries. Chem Eng J 354:616–622. https://doi.org/10.1016/j.cej.2018.08.056

    Article  CAS  Google Scholar 

  9. Mo R, Lei Z, Rooney D, Sun K (2019) Three-Dimensional Double-Walled ultrathin graphite tube conductive scaffold with encapsulated germanium nanoparticles as a High-Areal-Capacity and Cycle-Stable anode for Lithium-Ion batteries. ACS Nano 13:7536–7544. https://doi.org/10.1021/acsnano.8b09027

    Article  CAS  Google Scholar 

  10. Kim C, Song G, Luo L, Cheong JY, Cho S, Kwon D, Choi S, Jung J, Wang C, Kim I, Park S (2018) Stress-Tolerant nanoporous germanium nanofibers for long cycle life lithium storage with high structural stability. ACS Nano 12:8169–8176. https://doi.org/10.1021/acsnano.8b03278

    Article  CAS  Google Scholar 

  11. Jiang Y, Li Y, Zhou P, Lan Z, Lu Y, Wu C, Yan M (2017) Ultrafast, highly reversible, and Cycle-Stable lithium storage boosted by pseudocapacitance in Sn-Based alloying anodes. Adv Mater 29:1606499. https://doi.org/10.1002/adma.201606499

    Article  CAS  Google Scholar 

  12. Chen P, Wu F, Wang Y (2014) Four-Layer Tin-Carbon nanotube Yolk-Shell materials for High-Performance Lithium-Ion batteries. Chemsuschem 7:1407–1414. https://doi.org/10.1002/cssc.201301198

    Article  CAS  Google Scholar 

  13. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  14. Xu J, Zhao M, Wang Y, Yao W, Chen C, Anasori B, Sarycheva A, Ren CE, Mathis T, Gomes L, Liang Z, Gogotsi Y (2016) Demonstration of Li-Ion capacity of MAX phases. ACS Energy Lett 1:1094–1099. https://doi.org/10.1021/acsenergylett.6b00488

    Article  CAS  Google Scholar 

  15. Sun Z, Yuan M, Lin L, Yang H, Nan C, Li H, Sun G, Yang X (2019) Selective lithiation–expansion–microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Materials Letters 1:628–632. https://doi.org/10.1021/acsmaterialslett.9b00390

    Article  CAS  Google Scholar 

  16. Zhao S, Dall Agnese Y, Chu X, Zhao X, Gogotsi Y, Gao Y (2019) Electrochemical interaction of Sn-Containing MAX phase (Nb2SnC) with Li-Ions. ACS Energy Lett 4:2452–2457. https://doi.org/10.1021/acsenergylett.9b01580

    Article  CAS  Google Scholar 

  17. Wu H, Zhu J, Liu L, Cao K, Yang D, Gong C, Lei H, Hang H, Yao W, Xu J (2021) Intercalation and delamination of Ti2SnC with high lithium ion storage capacity. Nanoscale 13:7355–7361. https://doi.org/10.1039/D0NR06260J

    Article  CAS  Google Scholar 

  18. Luan S, Zhou J, Xi Y, Han M, Wang D, Gao J, Hou L, Gao F (2019) High lithium-ion storage performance of Ti3SiC2 MAX by oxygen doping. ChemistrySelect 4:5319–5321. https://doi.org/10.1002/slct.201900328

    Article  CAS  Google Scholar 

  19. Zhu J, Chroneos A, Wang L, Rao F, Schwingenschlögl U (2017) Stress-enhanced lithiation in MAX compounds for battery applications. Appl Mater Today 9:192–195. https://doi.org/10.1016/j.apmt.2017.07.002

    Article  Google Scholar 

  20. Eklund P, Beckers M, Jansson U, Högberg H, Hultman L (2010) The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 518:1851–1878. https://doi.org/10.1016/j.tsf.2009.07.184

    Article  CAS  Google Scholar 

  21. Barsoum MW (2013) MAX phases: Properties of machinable ternary carbides and nitrides. Wiley, Germany

    Book  Google Scholar 

  22. Wang XH, Zhou YC (2010) Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J Mater Sci Technol 26:385–416. https://doi.org/10.1016/S1005-0302(10)60064-3

    Article  Google Scholar 

  23. Barsoum MW, Radovic M (2011) Elastic and mechanical properties of the MAX phases. Annu Rev Mater Res 41:195–227. https://doi.org/10.1146/annurev-matsci-062910-100448

    Article  CAS  Google Scholar 

  24. Ahuja R, Eriksson O, Wills JM, Johansson B (2000) Electronic structure of Ti3SiC2. Appl Phys Lett 76:2226–2228. https://doi.org/10.1063/1.126304

    Article  CAS  Google Scholar 

  25. Islam MM, Aboutalebi SH, Cardillo D, Liu HK, Konstantinov K, Dou SX (2015) Self-Assembled multifunctional hybrids: toward developing High-Performance Graphene-Based architectures for energy storage devices. ACS Cent Sci 1:206–216. https://doi.org/10.1021/acscentsci.5b00189

    Article  CAS  Google Scholar 

  26. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647. https://doi.org/10.1038/ncomms12647

    Article  Google Scholar 

  27. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25Th Anniversary Article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  Google Scholar 

  28. Naguib M, Gogotsi Y (2014) Synthesis of two-dimensional materials by selective extraction. Accounts Chem Res 48:128–135. https://doi.org/10.1021/ar500346b

    Article  CAS  Google Scholar 

  29. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-Dimensional transition metal carbides. ACS Nano 6:1322–1331. https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  30. Barsoum MW (2000) The M(N+1)AX(N) phases: a new class of solids; Thermodynamically stable nanolaminates. Prog Solid State Ch 28:201–281. https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  31. Xie X, Wang S, Kretschmer K, Wang G (2017) Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries. J Colloid Interf Sci 499:17–32. https://doi.org/10.1016/j.jcis.2017.03.077

    Article  CAS  Google Scholar 

  32. Byeon A, Glushenkov AM, Anasori B, Urbankowski P, Li J, Byles BW, Blake B, Van Aken KL, Kota S, Pomerantseva E, Lee JW, Chen Y, Gogotsi Y (2016) Lithium-ion capacitors with 2D Nb2CTx (MXene) - carbon nanotube electrodes. J Power Sources 326:686–694. https://doi.org/10.1016/j.jpowsour.2016.03.066

    Article  CAS  Google Scholar 

  33. Liu Y, Wang W, Ying Y, Wang Y, Peng X (2015) Binder-free layered Ti3C2/CNTs nanocomposite anodes with enhanced capacity and long-cycle life for lithium-ion batteries. Dalton Trans 44:7123–7126. https://doi.org/10.1039/C4DT02058H

    Article  CAS  Google Scholar 

  34. Ren CE, Zhao M, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum MW, Gogotsi Y (2016) Porous two-dimensional transition metal carbide (MXene) flakes for High-Performance Li-Ion storage. ChemElectroChem 3:689–693. https://doi.org/10.1002/celc.201600059

    Article  CAS  Google Scholar 

  35. Xu B, Wang H, Zhu Q, Sun N, Anasori B, Hu L, Wang F, Guan Y, Gogotsi Y (2018) Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater 12:128–136. https://doi.org/10.1016/j.ensm.2017.12.006

    Article  Google Scholar 

  36. Xu S, Wei G, Li J, Han W, Gogotsi Y (2017) Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J Mater Chem A 5:17442–17451. https://doi.org/10.1039/C7TA05721K

    Article  CAS  Google Scholar 

  37. Lin Z, Sun D, Huang Q, Yang J, Barsoum MW, Yan X (2015) Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. J Mater Chem A 3:14096–14100. https://doi.org/10.1039/C5TA01855B

    Article  CAS  Google Scholar 

  38. Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C, Xia Y, Zhang J, Gan Y, Tao X (2017) Pillared structure design of MXene with ultralarge interlayer spacing for High-Performance Lithium-Ion capacitors. ACS Nano 11:2459–2469. https://doi.org/10.1021/acsnano.6b07668

    Article  CAS  Google Scholar 

  39. Han Y, Wang T, Gao X, Li T, Zhang Q (2016) Preparation of thermally reduced graphene oxide and the influence of its reduction temperature on the thermal, mechanical, flame retardant performances of PS nanocomposites. Composit Part A: Appl Sci Manufact 84:336–343. https://doi.org/10.1016/j.compositesa.2016.02.007

    Article  CAS  Google Scholar 

  40. Liu B, Huo L, Zhang G, Zhang J (2016) Ternary hollow mesoporous TiN/N-Graphene/Pt hybrid results in enhanced electrocatalytic performance for methanol oxidation and oxygen reduction reaction. Electrochim Acta 213:771–782. https://doi.org/10.1016/j.electacta.2016.07.098

    Article  CAS  Google Scholar 

  41. Wang WL, Oh B, Park J, Ki H, Jang J, Lee G, Gu H, Ham M (2015) Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability. J Power Sources 300:272–278. https://doi.org/10.1016/j.jpowsour.2015.09.078

    Article  CAS  Google Scholar 

  42. Jiang S, Wang R, Pang M, Wang H, Zeng S, Yue X, Ni L, Qiu S, Zhang Z (2015) Hierarchical composites of ultrathin carbon self-coated TiO2 nanosheets on reduced graphene oxide with enhanced lithium storage capability. Chem Eng J 280:614–622. https://doi.org/10.1016/j.cej.2015.06.054

    Article  CAS  Google Scholar 

  43. Shiraishi Y, Shiota S, Hirakawa H, Tanaka S, Ichikawa S, Hirai T (2017) Titanium Dioxide/Reduced graphene oxide hybrid photocatalysts for efficient and selective partial oxidation of cyclohexane. ACS Catal 7:293–300. https://doi.org/10.1021/acscatal.6b02611

    Article  CAS  Google Scholar 

  44. Hui-Ling MA, Long Z, You-Wei Z, Di L, Chao S, Xin-Miao Z, Mao-Lin Z (2015) Γ-Ray induced reduction of graphene oxide in aqueous solution. Acta Phys-Chim Sin 31:2016–2022. https://doi.org/10.3866/PKU.WHXB201508102

    Article  CAS  Google Scholar 

  45. Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, Park S, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg GS, Gogotsi Y, Nicolosi V (2017) Oxidation stability of colloidal Two-Dimensional titanium carbides (MXenes). Chem Mater 29:4848–4856. https://doi.org/10.1021/acs.chemmater.7b00745

    Article  CAS  Google Scholar 

  46. Li Y, Ma G, Shao H, Xiao P, Lu J, Xu J, Hou J, Chen K, Zhang X, Li M, Persson POÅ, Hultman L, Eklund P, Du S, Chai Z, Huang Z, Jin N, Ma J, Liu Y, Lin Z, Huang Q (2021) Electrochemical lithium storage performance of molten salt derived V2SnC MAX phase. Nano-Micro Letters 13:158. https://doi.org/10.1007/s40820-021-00684-6

    Article  CAS  Google Scholar 

  47. Ha JU, Lee J, Abbas MA, Lee MD, Lee J, Bang JH (2019) Designing hierarchical assembly of Carbon-Coated TiO2 nanocrystals and unraveling the role of TiO2/Carbon interface in Lithium-Ion storage in TiO2. ACS Appl Mater Interfaces 11:11391–11402. https://doi.org/10.1021/acsami.8b21705

    Article  CAS  Google Scholar 

  48. Yu Y (2016) Prediction of mobility, enhanced storage capacity, and volume change during sodiation on Interlayer-Expanded functionalized Ti3C2 MXene anode materials for Sodium-Ion batteries. J Phys Chem C 120:5288–5296. https://doi.org/10.1021/acs.jpcc.5b10366

    Article  CAS  Google Scholar 

  49. Li Y, Liang Y, Robles Hernandez FC, Deog Yoo H, An Q, Yao Y (2015) Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites. Nano Energy 15:453–461. https://doi.org/10.1016/j.nanoen.2015.05.012

    Article  CAS  Google Scholar 

  50. Xie X, Zhao M, Anasori B, Maleski K, Ren CE, Li J, Byles BW, Pomerantseva E, Wang G, Gogotsi Y (2016) Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy 26:513–523. https://doi.org/10.1016/j.nanoen.2016.06.005

    Article  CAS  Google Scholar 

  51. Zhao M, Torelli M, Ren CE, Ghidiu M, Ling Z, Anasori B, Barsoum MW, Gogotsi Y (2016) 2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage. Nano Energy 30:603–613. https://doi.org/10.1016/j.nanoen.2016.10.062

    Article  CAS  Google Scholar 

  52. Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous Single-Crystal-like TiO2–graphene nanocomposite enables High-Performance Sodium-Ion capacitors. ACS Nano 11:2952–2960. https://doi.org/10.1021/acsnano.6b08332

    Article  CAS  Google Scholar 

  53. Yao W, Zhao M, Dai Y, Tang J, Xu J (2017) Micro-/Mesoporous Zinc-Manganese Oxide/Graphene hybrids with high specific surface area: A High-Capacity, Superior-Rate, and Ultralong-Life anode for lithium storage. ChemElectroChem 4:230–235. https://doi.org/10.1002/celc.201600564

    Article  CAS  Google Scholar 

  54. Cui S, Feng W, Hu H, Feng Z, Liu H (2009) Hexagonal Ti2SC with high hardness and brittleness: a first-principles study. Scripta Mater 61:576–579. https://doi.org/10.1016/j.scriptamat.2009.05.026

    Article  CAS  Google Scholar 

  55. Sarycheva A, Gogotsi Y (2020) Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater 32:3480–3488. https://doi.org/10.1021/acs.chemmater.0c00359

    Article  CAS  Google Scholar 

  56. Chen J, Hu Q, Zhou A, Sun D (2015) Theoretical studies of lithium storage properties of novel Two-Dimensional carbides. Acta Phys-Chim Sin 31:2278–2284. https://doi.org/10.3866/PKU.WHXB201510136

    Article  CAS  Google Scholar 

  57. Xie Y, Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y, Yu X, Nam K, Yang X, Kolesnikov AI, Kent PRC (2014) Role of surface structure on Li-Ion energy storage capacity of two-dimensional transition-Metal carbides. J Am Chem Soc 136:6385–6394. https://doi.org/10.1021/ja501520b

    Article  CAS  Google Scholar 

  58. Kim J, Lee KE, Kim KH, Wi S, Lee S, Nam S, Kim C, Kim SO, Park B (2017) Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon 114:275–283. https://doi.org/10.1016/j.carbon.2016.12.022

    Article  CAS  Google Scholar 

  59. Li X, Li M, Yang Q, Liang G, Huang Z, Ma L, Wang D, Mo F, Dong B, Huang Q, Zhi C (2020) In situ electrochemical synthesis of MXenes without Acid/Alkali usage in/for an aqueous zinc ion battery. Adv Energy Mater 10:2001791. https://doi.org/10.1002/aenm.202001791

    Article  CAS  Google Scholar 

  60. Sun ZM (2013) Progress in research and development on MAX phases: a family of layered ternary compounds. Int Mater Rev 56:143–166. https://doi.org/10.1179/1743280410Y.0000000001

    Article  Google Scholar 

  61. Gupta S, Barsoum MW (2011) On the tribology of the MAX phases and their composites during dry sliding: a review. Wear 271:1878–1894. https://doi.org/10.1016/j.wear.2011.01.043

    Article  CAS  Google Scholar 

  62. Hu C, Zhang H, Li F, Huang Q, Bao Y (2013) New phases’ discovery in MAX family. Int J Refract Metal Hard Mater 36:300–312. https://doi.org/10.1016/j.ijrmhm.2012.10.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J. Xu thanks the National Natural Science Foundation of China (No. 21671167), Starting fund for returned overseas Chinese scholars of Ministry of Education of China and the Joint Open Fund of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. JH201847). W. Yao thanks the National Natural Science Foundation of China (No. 51602277), the Natural Science Foundation of Jiangsu Province (No. BK20140473).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguang Xu, Wei Yao or Yury Gogotsi.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article corrected to make changes in acknowledgements section and to the affiliation of a co-author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 11606 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Yao, X., Sun, G. et al. Lithium-ions uptake by MAX/graphene hybrid. Graphene and 2D mater 7, 59–71 (2022). https://doi.org/10.1007/s41127-022-00048-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41127-022-00048-w

Keywords

Navigation