Skip to main content

Advertisement

Log in

Selective Catalytic Reduction of NOx over V2O5-WO3-TiO2 SCR Catalysts—A Study at Elevated Pressure for Maritime Pre-turbine SCR Configuration

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

The selective catalytic reduction (SCR) of NOx using NH3 was studied at pressures up to 5 bar over a vanadium-based SCR catalyst (~1 wt% V2O5 and 10 wt% WO3/TiO2), relevant for the installation of SCR reactors upstream of the turbocharger at marine engines. Experiments were performed using both granulated catalyst in a lab-scale fixed-bed reactor and a monolith catalyst in a bench-scale setup. The residence time across the catalytic bed was kept constant, by increasing the (normalized (0 °C, 1 atm)) volumetric flow rate proportionally to the pressure. The results show that for the granulated catalyst, the NOx conversion was independent of the pressure, indicating that the SCR kinetics are not affected by the increased pressure up to 5 bar. NH3 temperature-programmed desorption experiments showed that the catalyst NH3 adsorption increased with more than 30% when the pressure was increased from 1 bar to 4.5 bar. On the other hand, when the adsorption temperature was increased from 150 to 300 °C, the adsorption capacity decreased by approximately 60% independent on the pressure. The SCR reaction was unaffected by the increased NH3 uptake caused by the increased pressure, because only a certain fraction of the sites (\( {\theta}_{N{H}_3}^{\ast } \) = 0.14) was found to be active in the SCR reaction, and these are filled up at lower NH3 partial pressure than the total number of sites. Experiments using a monolithic catalyst showed that at temperatures above 250 °C, the NOx conversion was lower at an increased pressure (3.1 bar) when the residence time was held constant. This decrease was ascribed to increased internal and external diffusion limitations at the elevated pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ABS:

Ammonium bisulfate

ANR:

Ammonia to NOx ratio

AS:

Ammonium sulfate

CPSI:

Channels per square inch

CSTR:

Continuous stirred tank reactor

EGR:

Exhaust gas recirculation

IMO:

International maritime organization

LNG:

Liquid natural gas

NECA:

NOx emission control area

NOx :

Nitrogen oxides, the sum of NO and NO2

PBR:

Packed bed reactor

RSS:

Residual sum of squares

SCR:

Selective catalytic reduction

SECA:

SOx emission control area

SOx :

Sulfur oxides, the sum of SO2, SO3, and H2SO4

V-SCR:

Vanadium-based SCR catalyst

α :

Temkin kinetics parameter [−]

C NH3 :

NH3 concentration [mol/m3]

d particle :

Catalyst particle diameter [m]

D reactor :

Reactor tube diameter [m]

D AB :

Binary diffusion coefficient [m/s2]

d h :

Hydraulic diameter [m]

ε :

Porosity [−]

E a :

Activation energy of the adsorption process of NH3 [J/mol]

\( {E}_d^0 \) :

Activation energy for the desorption process of NH3 [J/mol]

f :

Friction factor [−]

G z :

Graetz dimensional number [−]

k NO :

NO first order rate constant [1/s]

kNO :

Mass based NO first order rate constant [m3/s/kg]

\( {k}_a^0 \) :

Pre-exponential factor of the adsorption process of NH3 [m3/mol/s]

\( {k}_d^0 \) :

Pre-exponential factor for the desorption process of NH3 [1/s]

\( {K}_{{\mathrm{NH}}_3} \) :

NH3 adsorption equilibrium constant [m3/mol]

k(T ref):

Reaction rate constant calculate at the temperature Tref

L :

Length of catalyst [m]

Ω’:

NH3 adsorption capacity (mol/m3 particles)

\( \varOmega ={\varOmega}^{\prime}\cdot \frac{1-\varepsilon }{\varepsilon } \) :

NH3 adsorption capacity (mol/m3 reactor)

P reactor :

Reactor pressure [Pa]

Q 0 :

Volumetric flow rate (normal (0 °C, 1 atm)) [Nm3/s]

r a :

Rate of adsorption of NH3 [1/s]

r d :

Rate of desorption of NH3 [1/s]

Re:

Reynolds dimensional number [−]

ρ :

Density of catalyst [kg/m3]

r NO :

Rate of NO disappearance [1/s]

S c :

Schmidts dimensional number [−]

Sh:

Sherwood dimensional number [−]

Sh :

Asymptotic Sherwood number [−]

θ :

Surface coverage of NH3 [−]

\( {\theta}_{{\mathrm{NH}}_3}^{\ast } \) :

Fraction of active sites in the SCR reaction [−]

θ v :

Surface coverage of vanadium [−]

U :

Linear velocity [m/s]

V :

Volume [m3]

v 0 :

volumetric flow rate [m3/s]

W :

Weight of catalyst [kg]

y meas :

Vectors containing the measured gas phase mole fraction [ppm]

y model :

Vectors containing the modeled gas phase mole fraction [ppm]

z :

Axial coordinate [m]

Z*:

Dimensionless axial coordinate [−]

References

  1. Hallquist, Å.M., Fridell, E., Westerlund, J., Hallquist, M.: Onboard measurements of nanoparticles from a SCR-equipped marine diesel engine. Environ. Sci. Technol. 47(2), 773–780 (2013). https://doi.org/10.1021/es302712a

    Article  Google Scholar 

  2. Man Diesel & Turbo, Exhaust gas emission control today and tomorrow. http://marine.man.eu/docs/librariesprovider6/technical-papers/exhaust-gas-emission-control-today-and-tomorrow.pdf?sfvrsn=22 (accessed September 10, 2015).

  3. Lamas, M.I., Rodríguez, C.G.: Emissions from marine engines and NOx reduction methods. J. Marit. Res. 9, 77–81 (2012)

    Google Scholar 

  4. Briggs, J., Mccarney, J.: Field Experience of Marine SCR. CIMAC Congr (2013)

  5. Niki, Y. Hirata, K. Kishi, T. Inaba, T. Takagi, M. Fukuda, T. Nagai, T. Muraoka, E.: SCR System for NOx reduction of medium speed marine diesel engine, in: CIMAC Congress, Vol. 22 p. 12 (2010)

  6. G. Lövblad, E. Fridell, Experiences from use of some techniques to reduce emissions from ships, Göteborg. http://cleantech.cnss.no/wp-content/uploads/2011/09/2006-Lovblad-and-Fridell-Experiences-from-use-of-some-techniques-to-reduce-emissions-from-ships.pdf. (2006). Accessed 16 Dec 2015

  7. Magnusson, M., Fridell, E., Ingelsten, H.H.: The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl. Catal. B Environ. 111–112, 20–26 (2012). https://doi.org/10.1016/j.apcatb.2011.09.010

    Article  Google Scholar 

  8. Österman, C., Magnusson, M.: A systemic review of shipboard SCR installations in practice. WMU J. Marit. Aff. 12(1), 63–85 (2013). https://doi.org/10.1007/s13437-012-0034-1

    Article  Google Scholar 

  9. Lehtoranta, K., Vesala, H., Koponen, P., Korhonen, S.: Selective catalytic reduction operation with heavy fuel oil: NOx , NH3, and particle emissions. Environ. Sci. & Technol. 49(7), 4735–4741 (2015). https://doi.org/10.1021/es506185x

    Article  Google Scholar 

  10. Det Norske Veritas (DNV), Marpol 73/78 Annex VI, (2009). http://hulpinnood.nl/wp-content/uploads/2015/03/BIJLAGE3_Marpol-annex-VI.pdf (accessed May 9, 2016)

  11. IMO, The 2020 Global Sulfur Limit. http://www.imo.org/en/MediaCentre/HotTopics/GHG/Documents/FAQ_2020_English.pdf (accessed October 12, 2017)

  12. IMO, Emission Control Areas designated under MARPOL Annex VI, (2018). http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-of-MARPOL-Annex-VI-(NOx-emission-control).aspx (accessed January 12, 2019)

  13. Mollenhauer, K., Tschöke, H.: Handbook of Diesel Engines. Springer Berlin Heidelberg, Berlin (2010). https://doi.org/10.1007/978-3-540-89083-6

    Book  Google Scholar 

  14. Turns, S.R.: An introduction to combustion: concepts and applications. New York, NY: McGraw-Hill (2012)

  15. Forzatti, P., Lietti, L.: Recent advances in DeNOxing catalysis for stationary applications. Heterog. Chem. Rev. 3(1), 33–51 (1996)

    Article  Google Scholar 

  16. Koebel, M., Elsener, M., Madia, G.: Recent advances in the development of urea-SCR for automotive applications. Sae Tech. Pap. (2001). https://doi.org/10.4271/2001-01-3625

  17. P. Blakeman, K. Arnby, P. Marsh, C. Newman, G. Smedler, Optimization of an SCR catalyst system to meet EUIV heavy duty diesel legislation, SAE Tech. Pap. 2 (2008). https://doi.org/10.4271/2008-01-1542

  18. Guan, B., Zhan, R., Lin, H., Huang, Z.: Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 66(1-2), 395–414 (2014). https://doi.org/10.1016/j.applthermaleng.2014.02.021

    Article  Google Scholar 

  19. Kröcher, O.: Aspects of catalyst development for mobile urea-SCR systems—from Vanadia-Titania catalysts to metal-exchanged zeolites. Stud. Surf. Sci. Catal. 171, 261-289 (2007) https://doi.org/10.1016/S0167-2991(07)80210-2.

  20. Man Diesel & Turbo, Tier III Two-Stroke Technology, (2012). http://marine.man.eu/docs/librariesprovider6/technical-papers/tier-iii-two-stroke-technology.pdf?sfvrsn=12 (accessed September 10, 2015)

  21. IMO, IMO MEPC 66/6/15, (2014). http://www.worldshipping.org/industry-issues/environment/air-emissions/MEPC_66-6-15_-_Comments_concerning_potential_amendments_to_the_effective___.pdf (accessed November 20, 2017).

  22. H. Bosch, F. Janssen, Preface, Catal. Today. 2 v. https://doi.org/10.1016/0920-5861(88)80001-4 (1988)

  23. G. Centi, S. Perathoner: Chapter 1 introduction: state of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2. in: Stud. Surf. Sci. Catal., pp. 1–23. https://doi.org/10.1016/S0167-2991(07)80202-3. 2007

  24. Gabrielsson, P., Pedersen, H.G.: Flue gas from stationary sources. In: Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J. (eds.) Handb. Heterog. Catal, pp. 2345–2385. Wiley-VCH (2008) http://findit.dtu.dk/en/catalog/2342172429 (accessed March 29, 2017)

  25. I. Nova, E. Tronconi: Urea-SCR Technology for deNOx After Treatment of Diesel Exhausts, Springer. https://doi.org/10.1007/978-1-4899-8071-7 (2014)

  26. Marine Fuels 2020. https://www.marinefuels2020.com/marine-fuels/background/ (accessed April 6, 2019).

  27. CIMAC Working Group 8, CIMAC Guideline: Cold Corrosion in Marine Two Stroke, CIMAC Guidel. (2017) 1–36. https://cimac.com/cms/upload/Publication_Press/WG_Publications/CIMAC_WG8_Guideline_2017_Two_Stroke_Engine_Cold_Corrosion.pdf. Accessed 27 June 2018

  28. Orsenigo, C., Beretta, A., Forzatti, P., Svachula, J., Tronconi, E., Bregani, F., Baldacci, A.: Theoretical and experimental study of the interaction between NOx reduction and SO2 oxidation over DeNOx-SCR catalysts. Catal. Today. 27(1-2), 15–21 (1996). https://doi.org/10.1016/0920-5861(95)00168-9

    Article  Google Scholar 

  29. Tronconi, E., Cavanna, A., Orsenigo, C., Forzatti, P.: Transient kinetics of SO2 oxidation over SCR-DeNOx monolith catalysts. Ind. Eng. Chem. Res. 38(7), 2593–2598 (1999). https://doi.org/10.1021/ie980673e.

    Article  Google Scholar 

  30. Muzio, L., Bogseth, S., Himes, R., Chien, Y.-C., Dunn-Rankin, D.: Ammonium bisulfate formation and reduced load SCR operation. Fuel. 206, 180–189 (2017). https://doi.org/10.1016/j.fuel.2017.05.081

    Article  Google Scholar 

  31. J.M. Burke, K.L. Johnson: Ammonium sulfate and bisulfate formation in air preheaters (project summary). http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000TU1N.txt.1982. Accessed 21 Sept 2015

  32. Matsuda, S., Kamo, T., Kato, A., Nakajima, F., Kumura, T., Kuroda, H.: Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia. Ind. Eng. Chem. Prod. Res. Dev. 21(1), 48–52 (1982). https://doi.org/10.1021/i300005a009

    Article  Google Scholar 

  33. T. Fujibayashi, S. Baba, H. Tanaka: Development of Marine SCR System for Large Two-Stroke Diesel Engines Complying with IMO NOx Tier III. in: CIMAC Congr. (2013)

  34. R. Bank, B. Buchholz, H. Harndorf, R. Rabe, U. Etzien: High-Pressure SCR at Large Diesel Engines for Reliable NOx - Reduction and Compliance with IMO Tier III Standards, in: CIMAC Congr. 2013

  35. Kröcher, O., Elsener, M., Bothien, M.-R., Dölling, W.: Pre-Turbo SCR - influence of pressure on NOx reduction. MTZ Worldw. 75(4), 46–51 (2014). https://doi.org/10.1007/s38313-014-0140-x

    Article  Google Scholar 

  36. Rammelt, T., Torkashvand, B., Hauck, C., Böhm, J., Gläser, R., Deutschmann, O.: Nitric oxide reduction of heavy-duty diesel off-gas by NH3-SCR in front of the turbocharger. Emiss. Control Sci. Technol. 3(4), 275–288 (2017). https://doi.org/10.1007/s40825-017-0078-y

    Article  Google Scholar 

  37. K. Sandelin, D. Peitz: SCR under pressure - pre-turbocharger NOx abatement for marine 2-stroke diesel engines, in: CIMAC Congr. (2016)

  38. Schüttenhelm, W., Günther, C., Jürgens, R.: High pressure SCR for large two-stroke engines and comparison to conventional SCR high dust applications. VGB Powertech. 8, 58–62 (2017)

    Google Scholar 

  39. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport phenomena. J. Wiley pp. xii, 905 s (2007)

  40. Christensen, S.R., Hansen, B.B., Johansen, K., Pedersen, K.H., Thøgersen, J.R., Jensen, A.D.: SO2 oxidation across marine V2O5-WO3-TiO2 SCR catalysts: a study at elevated pressure for preturbine SCR configuration. Emiss. Control Sci. Technol. 4(4), 289–299 (2018). https://doi.org/10.1007/s40825-018-0092-8

    Article  Google Scholar 

  41. Koebel, M., Madia, G., Elsener, M.: Selective catalytic reduction of NO and NO2 at low temperatures. Catal. Today. 73(3-4), 239–247 (2002). https://doi.org/10.1016/S0920-5861(02)00006-8

    Article  Google Scholar 

  42. Tronconi, E., Forzatti, P., Gomez Martin, J.P., Mallogi, S.: Selective catalytic removal of NOx: a mathematical model for design of catalyst and reactor. Chem. Eng. Sci. 47(9-11), 2401–2406 (1992). https://doi.org/10.1016/0009-2509(92)87067-Z

    Article  Google Scholar 

  43. Nova, I., Lietti, L., Beretta, A., Forzatti, P.: Study of the sintering of a deNOx commercial catalyst. Stud. Surf. Sci. Catal. 139, 149–156 (2001). https://doi.org/10.1016/S0167-2991(01)80192-0

    Article  Google Scholar 

  44. Dumesic, J.A., Topsøe, N.-Y., Topsøe, H., Chen, Y., Slabiak, T.: Kinetics of selective catalytic reduction of nitric oxide by Ammonia over Vanadia/Titania. J. Catal. 163(2), 409–417 (1996). https://doi.org/10.1006/jcat.1996.0342

    Article  Google Scholar 

  45. Tsukahara, H., Ishida, T., Mayumi, M.: Gas-phase oxidation of nitric oxide: chemical kinetics and rate constant. Nitric Oxide. 3(3), 191–198 (1999). https://doi.org/10.1006/niox.1999.0232

    Article  Google Scholar 

  46. Lietti, L., Nova, I., Camurri, S., Tronconi, E., Forzatti, P.: Dynamics of the SCR-DeNOx reaction by the transient-response method. AICHE J. 43(10), 2559–2570 (1997). https://doi.org/10.1002/aic.690431017

    Article  Google Scholar 

  47. Levenspiel, O.: The chemical reactor omnibook, Distributed by OSU Book Stores, (1989)

  48. Pushnov, A.S.: Calculation of average bed porosity. Chem. Pet. Eng. 42(1-2), 14–17 (2006). https://doi.org/10.1007/s10556-006-0045-x

    Article  Google Scholar 

  49. Rawlings, J.B., Ekerdt, J.G.: Chemical reactor analysis and design fundamentals, 2. Edition, Madison, Wis.: Nob Hill Pub (2002)

  50. Forzatti, P., Nova, I., Beretta, A.: Catalytic properties in deNOx and SO2–SO3 reactions. Catal. Today. 56(4), 431–441 (2000). https://doi.org/10.1016/S0920-5861(99)00302-8

    Article  Google Scholar 

  51. Beeckman, J.W., Hegedus, L.L.: Design of monolith catalysts for power plant NOx emission control. Ind. Eng. Chem. Res. 30(5), 969–978 (1991). https://doi.org/10.1021/ie00053a020

    Article  Google Scholar 

  52. J.A. Dumesic, N.-Y. Topsoe, T. Slabiak, P. Morsing, B.S. Clausen, E. Törqvist, H. Topsoe: Microiunetic analysis of the selective catalytic reduction (SCR) of nitric oxide over Vanadia/Titania-based Catalysts, in. pp. 1325–1337. https://doi.org/10.1016/S0167-2991(08)64454-7 (1993)

  53. Olsen, B.K., Castellino, F., Jensen, A.D.: Modeling deactivation of catalysts for selective catalytic reduction of NOx by KCl aerosols. Ind. Eng. Chem. Res. 56(45), 13020–13033 (2017). https://doi.org/10.1021/acs.iecr.7b01239.

    Article  Google Scholar 

  54. Koebel, M., Elsener, M.: Selective catalytic reduction of NO over commercial DeNOx catalysts: comparison of the measured and calculated performance. Ind. Eng. Chem. Res. 37(2), 327–335 (1998). https://doi.org/10.1021/ie970569h.

    Article  Google Scholar 

  55. Tronconi, E., Forzatti, P.: Adequacy of lumped parameter models for SCR reactors with monolith structure. AICHE J. 38(2), 201–210 (1992). https://doi.org/10.1002/aic.690380205

    Article  Google Scholar 

  56. Shah, R.K., London, A.L.: Laminar flow forced convection in ducts. New York: Academic Press (1978)

  57. Tratz, H., Grigull, U.: Thermischer Einlauf in Ausgebildeter Laminarer Rohrströmung. Int. J. Heat Mass Transf. 8, 669–678 (1965)

    Article  Google Scholar 

  58. Clement, K.H. Fangel, P. Jensen, A.D. Thomsen, K.: Kemiske enhedsoperationer, Polyteknisk Forlag. (2004)

Download references

Acknowledgments

This work is part of the Danish societal partnership, Blue INNOship, and partly funded by the Innovation Fund Denmark (IFD) under File No: 155-2014-10 and the Danish Maritime Fund. The authors gratefully acknowledge the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anker D. Jensen.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 4763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, S.R., Hansen, B.B., Pedersen, K.H. et al. Selective Catalytic Reduction of NOx over V2O5-WO3-TiO2 SCR Catalysts—A Study at Elevated Pressure for Maritime Pre-turbine SCR Configuration. Emiss. Control Sci. Technol. 5, 263–278 (2019). https://doi.org/10.1007/s40825-019-00127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-019-00127-0

Keywords

Navigation