Skip to main content
Log in

Randomized and fault-tolerant method of subspace corrections

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the iterative method of subspace corrections with random ordering. We prove identities for the expected convergence rate and use these results to provide sharp estimates for the expected error reduction per iteration. We also study the fault-tolerant features of the randomized successive subspace correction method by rejecting corrections when faults occur and show that the resulting iterative method converges with probability one. In addition, we derive estimates on the expected convergence rate for the fault-tolerant, randomized, subspace correction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bramble, J.: Multigrid Methods. Chapman & Hall/CRC, Boca Raton (1993)

    MATH  Google Scholar 

  2. Cui, T., Xu, J., Zhang, C.S.: An error-resilient redundant subspace correction method. Comput. Vis. Sci. 18(2–3), 65–77 (2017)

    Article  MathSciNet  Google Scholar 

  3. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420 (1964). https://doi.org/10.1145/364520.364540

    Article  Google Scholar 

  4. Eldar, Y.C., Needell, D.: Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma. Numer. Algorithms 58(2), 163–177 (2011)

    Article  MathSciNet  Google Scholar 

  5. Fisher, R.A., Yates, F.: Statistical Tables for Biological Agricultural and Medical Research. Oliver and Boyd, London (1948)

    MATH  Google Scholar 

  6. Griebel, M., Oswald, P.: On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70(2), 163–180 (1995). https://doi.org/10.1007/s002110050115

    Article  MathSciNet  MATH  Google Scholar 

  7. Griebel, M., Oswald, P.: Greedy and randomized versions of the multiplicative Schwarz method. Linear Algebra Appl. 437(7), 1596–1610 (2012)

    Article  MathSciNet  Google Scholar 

  8. Hackbusch, W.: Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4. Springer-Verlag, Berlin (1985)

    Google Scholar 

  9. Hoemmen, M., Heroux, M.A.: Fault-tolerant iterative methods via selective reliability. In: Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, vol. 3, p. 9 (2011)

  10. Huber, M., Gmeiner, B., Rüde, U., Wohlmuth, B.: Resilience for massively parallel multigrid solvers. SIAM J. Sci. Comput. 38(5), S217–S239 (2016)

    Article  MathSciNet  Google Scholar 

  11. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35(3), 641–654 (2010)

    Article  MathSciNet  Google Scholar 

  12. Liu, J., Wright, S.J.: An accelerated randomized kaczmarz algorithm. arXiv preprint arXiv:1310.2887 (2013)

  13. Mansour, H., Yilmaz, O.: A fast randomized kaczmarz algorithm for sparse solutions of consistent linear systems. arXiv preprint arXiv:1305.3803 (2013)

  14. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395–403 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)

    Article  MathSciNet  Google Scholar 

  16. Oswald, P., Zhou, W.: Convergence analysis for Kaczmarz-type methods in a Hilbert space framework. Linear Algebra Appl. 478, 131–161 (2015)

    Article  MathSciNet  Google Scholar 

  17. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  18. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  19. Roy-Chowdhury, A., Banerjee, P.: A fault-tolerant parallel algorithm for iterative solution of the laplace equation. In: International Conference on Parallel Processing, 1993. ICPP 1993, vol. 3, pp. 133–140. IEEE (1993)

  20. Roy-Chowdhury, A., Bellas, N., Banerjee, P.: Algorithm-based error-detection schemes for iterative solution of partial differential equations. IEEE Trans. Comput. 45(4), 394–407 (1996)

    Article  Google Scholar 

  21. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Fault tolerant preconditioned conjugate gradient for sparse linear system solution. In: Proceedings of the 26th ACM International Conference on Supercomputing, pp. 69–78. ACM (2012)

  22. Southwell, R.V.: Relaxation Methods in Engineering Science—A Treatise in Approximate Computation. Oxford University Press, Oxford (1946)

    Google Scholar 

  23. Stoyanov, M.K., Webster, C.G.: Numerical analysis of fixed point algorithms in the presence of hardware faults. Tech. rep., Tech. rep. Oak Ridge National Laboratory (ORNL) (2013)

  24. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  Google Scholar 

  25. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer Verlag, Berlin (2005)

    Book  Google Scholar 

  26. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, Cambridge (2001)

    MATH  Google Scholar 

  27. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992). https://doi.org/10.1137/1034116

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15(3), 573–597 (2002). https://doi.org/10.1090/S0894-0347-02-00398-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchao Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Hu was partially supported by NSF (DMS-1620063). The work of Xu and Zikatanov was supported in part by NSF (DMS-1522615)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, J. & Zikatanov, L.T. Randomized and fault-tolerant method of subspace corrections. Res Math Sci 6, 29 (2019). https://doi.org/10.1007/s40687-019-0187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-019-0187-z

Keywords

Navigation