Skip to main content
Log in

Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

As a hybrid material, metal organic frameworks (MOFs) contain unique characteristics for biomedical applications such as high porosity, large surface area, different crystalline morphologies, and nanoscale dimensions. These frameworks are assembled through the interconnection of organic linkers with metal nodes, while the engineering of an MOF for biomedical applications requires versatile linkers with acceptable symmetry. Porphyrin, as an organic linker with interesting photochemical and photophysical properties, attracted the attention of many for engineering the potent multifunctional porphyrinic metal organic frameworks (PMOFs). In this regard, a large number of approaches were conducted for designing robust practical PMOFs with a wide range of applications. In this review, we introduced another perspective of MOFs and coordination polymers constructed from porphyrinic linkers with a special focus on those synthesized by meso-tetrakis (4-carboxyphenyl) porphyrin (TCPP). In the following, we summarized and discussed the different types of PMOFs and their biomedical applications in terms of diagnostic agent, therapeutic platform, and drug delivery vehicle.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

MOFs:

Metal–organic frameworks

PMOFs:

Porphyrinic MOFs

NMOFs:

Nano MOFs

NPs:

Nanoparticles

TCPP:

Meso-tetrakis (4-carboxyphenyl) porphyrin

PDT:

Photodynamic therapy

ROS:

Reactive oxygen species

PSs:

Photosensitizers

NIR:

Near Infrared

EPR:

Enhanced permeability and retention

4,4’-bipy:

4,4’-Bipyridine

PPF:

Porphyrin-paddlewheel framework

GSH:

Glutathione

3D:

Three dimensional

PEG:

Poly ethylene glycol

MRT:

Magnetic resonance imaging

CT:

Computed tomography

DOX:

Doxorubicin

5-FU:

5-Fluorouracil

PTT:

Photo thermal therapy

ISC:

Intersystem crossing

References

  1. Xu, M., Yang, S.S., Gu, Z.Y.: Two-dimensional metal–organic framework nanosheets: a rapidly growing class of versatile nanomaterials for gas separation, MALDI-TOF matrix and biomimetic applications. Chem. Eur. J. 24(57), 15131–15142 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Kuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhao, D., Zhuang, W., Zhou, H.-C.: Potential applications of metal–organic frameworks. Coord. Chem. Rev. 253(23–24), 3042–3066 (2009)

    Article  CAS  Google Scholar 

  3. Zhou, H.-C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Kukkar, D., Vellingiri, K., Kim, K.-H., Deep, A.: Recent progress in biological and chemical sensing by luminescent metal–organic frameworks. Sens. Actuators B: Chem. 273, 1346–1370 (2018)

    Article  CAS  Google Scholar 

  5. Xie, M.-H., Yang, X.-L., Wu, C.-D.: A metalloporphyrin functionalized metal–organic framework for selective oxidization of styrene. ChemComm 47(19), 5521–5523 (2011)

    CAS  Google Scholar 

  6. Gao, W.-Y., Zhang, Z., Cash, L., Wojtas, L., Chen, Y.-S., Ma, S.: Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake. CrystEngComm 15(45), 9320–9323 (2013)

    Article  CAS  Google Scholar 

  7. Feng, D., Jiang, H.-L., Chen, Y.-P., Gu, Z.-Y., Wei, Z., Zhou, H.-C.: Metal–organic frameworks based on previously unknown Zr8/Hf8 cubic clusters. Inorg. Chem. 52(21), 12661–12667 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. Nandi, G., Goldberg, I.: Fixation of CO2 in bi-layered coordination networks of zinc tetra (4-carboxyphenyl) porphyrin with multi-component [Pr2Na3(NO3)(H2O)3] connectors. ChemComm 50(88), 13612–13615 (2014)

    CAS  Google Scholar 

  9. Wang, K., Feng, D., Liu, T.-F., Su, J., Yuan, S., Chen, Y.-P., Bosch, M., Zou, X., Zhou, H.-C.: A series of highly stable mesoporous metalloporphyrin Fe-MOFs. J. Am. Chem. Soc. 136(40), 13983–13986 (2014)

    Article  CAS  PubMed  Google Scholar 

  10. Beyzavi, M.H., Vermeulen, N.A., Howarth, A.J., Tussupbayev, S., League, A.B., Schweitzer, N.M., Gallagher, J.R., Platero-Prats, A.E., Hafezi, N., Sarjeant, A.A.: A hafnium-based metal–organic framework as a nature-inspired tandem reaction catalyst. J. Am. Chem. Soc. 137(42), 13624–13631 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, W., Jiang, P., Wang, Y., Zhang, J., Zhang, P.: An efficient catalyst based on a metal metalloporphyrinic framework for highly selective oxidation. Catal. Lett. 145(2), 589–595 (2015)

    Article  CAS  Google Scholar 

  12. Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., Zhang, Q., Chen, Y.-P., Bosch, M., Zou, L.: A single crystalline porphyrinic titanium metal–organic framework. Chem. Sci. 6(7), 3926–3930 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamabayashi, T., Atzori, M., Tesi, L., Cosquer, G., Santanni, F., Boulon, M.-E., Morra, E., Benci, S., Torre, R., Chiesa, M.: Scaling up electronic spin qubits into a three-dimensional metal–organic framework. J. Am. Chem. Soc. 140(38), 12090–12101 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Y., Liu, W., Shang, Y., Cao, P., Cui, J., Li, Z., Yin, X., Li, Y.: Folic acid-nanoscale gadolinium-porphyrin metal–organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int. J. Nanomed. 14, 57–74 (2019)

    Article  CAS  Google Scholar 

  15. Kim, K., Lee, S., Jin, E., Palanikumar, L., Lee, J.H., Kim, J.C., Nam, J.S., Jana, B., Kwon, T.-H., Kwak, S.K.: MOF× biopolymer: collaborative combination of metal–organic framework and biopolymer for advanced anticancer therapy. ACS Appl. Mater. Interfaces 11(31), 27512–27520 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Charbgoo, F., Alibolandi, M., Taghdisi, S.M., Abnous, K., Soltani, F., Ramezani, M.: MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomed. Nanotechnol. Biol. Med. 14(3), 685–697 (2018)

    Article  CAS  Google Scholar 

  17. Liu, M., Wang, L., Zheng, X., Xie, Z.: Zirconium-based nanoscale metal–organic framework/poly (ε-caprolactone) mixed-matrix membranes as effective antimicrobials. ACS Appl. Mater. Interfaces 9(47), 41512–41520 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Abdelhamid, H.N.: Biointerface between ZIF-8 and biomolecules and their applications. Biointerface Res. Appl. Chem. 11(1), 8283–8297 (2021)

    CAS  Google Scholar 

  19. Abdelhamid, H.N.: Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review. Curr. Med. Chem. 28(34), 7023–7075 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. An, J., Farha, O.K., Hupp, J.T., Pohl, E., Yeh, J.I., Rosi, N.L.: Metal-adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat. Commun. 3(1), 1–6 (2012)

    Article  Google Scholar 

  21. McKinlay, A.C., Morris, R.E., Horcajada, P., Férey, G., Gref, R., Couvreur, P., Serre, C.: BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49(36), 6260–6266 (2010)

    Article  CAS  Google Scholar 

  22. Nie, X., Wu, S., Mensah, A., Wang, Q., Huang, F., Wei, Q.: FRET as a novel strategy to enhance the singlet oxygen generation of porphyrinic MOF decorated self-disinfecting fabrics. Chem. Eng. J. 395, 125012 (2020)

    Article  CAS  Google Scholar 

  23. Orellana-Tavra, C., Baxter, E.F., Tian, T., Bennett, T.D., Slater, N.K., Cheetham, A.K., Fairen-Jimenez, D.: Amorphous metal–organic frameworks for drug delivery. ChemComm 51(73), 13878–13881 (2015)

    CAS  Google Scholar 

  24. Lázaro, I.A., Rodrigo-Muñoz, J.M., Sastre, B., Ángel, M.R., Martí-Gastaldo, C., Del Pozo, V.: The excellent biocompatibility and negligible immune response of the titanium heterometallic MOF MUV-10. J. Mater. Chem. B 9(31), 6144–6148 (2021)

    Article  PubMed  Google Scholar 

  25. Park, J., Xu, M., Li, F., Zhou, H.-C.: 3D long-range triplet migration in a water-stable metal–organic framework for upconversion-based ultralow-power in vivo imaging. J. Am. Chem. Soc. 140(16), 5493–5499 (2018)

    Article  CAS  PubMed  Google Scholar 

  26. Yan, X., Yang, Q., Fang, X., Xiong, P., Liu, S., Cao, Z., Liao, C., Liu, S., Jiang, G.: Co (ii)-based metal–organic framework induces apoptosis through activating the HIF-1α/BNIP3 signaling pathway in microglial cells. Environ. Sci. Nano 8(10), 2866–2882 (2021)

    Article  CAS  Google Scholar 

  27. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C.: Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9(2), 172–178 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zhu, W., Xiang, G., Shang, J., Guo, J., Motevalli, B., Durfee, P., Agola, J.O., Coker, E.N., Brinker, C.J.: Versatile surface functionalization of metal–organic frameworks through direct metal coordination with a phenolic lipid enables diverse applications. Adv. Funct. Mater. 28(16), 1705274 (2018)

    Article  Google Scholar 

  29. Cui, R., Zhao, P., Yan, Y., Bao, G.: Outstanding drug-loading/release capacity of hollow Fe-metal–organic framework-based microcapsules: a potential multifunctional drug-delivery platform. Inorg. Chem. 60(3), 1664–1671 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. Sun, X.-Y., Zhang, H.-J., Zhao, X.-Y., Sun, Q., Wang, Y.-Y., Gao, E.-Q.: Dual functions of pH-sensitive cation Zr-MOF for 5-Fu: large drug-loading capacity and high-sensitivity fluorescence detection. Dalton Trans. 50(30), 10524–10532 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. Nirosha Yalamandala, B., Shen, W.T., Min, S.H., Chiang, W.H., Chang, S.J., Hu, S.H.: Advances in functional metal–organic frameworks based on-demand drug delivery systems for tumor therapeutics. Adv. NanoBiomed. Res. 1(8), 2100014 (2021)

    Article  CAS  Google Scholar 

  32. Lan, G., Ni, K., Lin, W.: Nanoscale metal–organic frameworks for phototherapy of cancer. Coord. Chem. Rev. 379, 65–81 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Pereira, C.F., Simões, M.M., Tomé, J.P., Almeida Paz, F.A.: Porphyrin-based metal–organic frameworks as heterogeneous catalysts in oxidation reactions. Molecules 21(10), 1348 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sun, Y., Sun, L., Feng, D., Zhou, H.C.: An in situ one-pot synthetic approach towards multivariate zirconium MOFs. Angew. Chem. 128(22), 6581–6585 (2016)

    Article  ADS  Google Scholar 

  35. Zhang, Z., Tong, J., Meng, X., Cai, Y., Ma, S., Huo, F., Luo, J., Xu, B.-H., Zhang, S., Pinelo, M.: Development of an ionic porphyrin-based platform as a biomimetic light-harvesting agent for high-performance photoenzymatic synthesis of methanol from CO2. ACS Sustain. Chem. Eng. 9(34), 11503–11511 (2021)

    Article  CAS  Google Scholar 

  36. He, Y., Li, N., Li, W., Zhang, X., Zhang, X., Liu, Z., Liu, Q.: 5, 10, 15, 20-tetrakis (4-carboxylphenyl) porphyrin functionalized NiCo2S4 yolk-shell nanospheres: excellent peroxidase-like activity, catalytic mechanism and fast cascade colorimetric biosensor for cholesterol. Sens. Actuators B Chem. 326, 128850 (2021)

    Article  CAS  Google Scholar 

  37. Kong, X.J., He, T., Zhou, J., Zhao, C., Li, T.C., Wu, X.Q., Wang, K., Li, J.R.: In situ porphyrin substitution in a Zr (IV)-MOF for stability enhancement and photocatalytic CO2 reduction. Small 17(22), 2005357 (2021)

    Article  CAS  Google Scholar 

  38. Mathew, D., Sujatha, S.: Interactions of porphyrins with DNA: a review focusing recent advances in chemical modifications on porphyrins as artificial nucleases. J. Inorg. Biochem. 219, 111434 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. Feng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., Bosch, M., Yuan, S., Zhou, H.-C.: A highly stable porphyrinic zirconium metal–organic framework with shp-a topology. J. Am. Chem. Soc. 136(51), 17714–17717 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Paolesse, R., Nardis, S., Monti, D., Stefanelli, M., Di Natale, C.: Porphyrinoids for chemical sensor applications. Chem. Rev. 117(4), 2517–2583 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. O’Connor, A.E., Gallagher, W.M., Byrne, A.T.: Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol. 85(5), 1053–1074 (2009)

    Article  PubMed  Google Scholar 

  42. Rodrigues, J., Amorim, R., Silva, M., Baltazar, F., Wolffenbuttel, R., Correia, J.: Photodynamic therapy at low-light fluence rate: In vitro assays on colon cancer cells. IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018)

    Article  Google Scholar 

  43. Tsolekile, N., Nelana, S., Oluwafemi, O.S.: Porphyrin as diagnostic and therapeutic agent. Molecules 24(14), 2669 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rotenberg, M., Margalit, R.: Deuteroporphyrin-albumin binding equilibrium. The effects of porphyrin self-aggregation studied for the human and the bovine proteins. Biochem. J. 229(1), 197–203 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kano, K., Nakajima, T., Takei, M., Hashimoto, S.: Self aggregation of cationic porphyrin in water. Bull. Chem. Soc. Jpn. 60(4), 1281–1287 (1987)

    Article  CAS  Google Scholar 

  46. Hachimine, K., Shibaguchi, H., Kuroki, M., Yamada, H., Kinugasa, T., Nakae, Y., Asano, R., Sakata, I., Yamashita, Y., Shirakusa, T.: Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na (I), which is devoid of photosensitivity. Cancer Sci. 98(6), 916–920 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, H., Zhu, J.Y., Li, S.Y., Zeng, J.Y., Lei, Q., Chen, K.W., Zhang, C., Zhang, X.Z.: An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 26(43), 7847–7860 (2016)

    Article  CAS  Google Scholar 

  48. Liu, J., Zhang, L., Lei, J., Shen, H., Ju, H.: Multifunctional metal–organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl. Mater. Interfaces 9(3), 2150–2158 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. Chen, J., Wang, Y., Niu, H., Wang, Y., Wu, A., Shu, C., Zhu, Y., Bian, Y., Lin, K.: Metal–organic framework-based nanoagents for effective tumor therapy by dual dynamics-amplified oxidative stress. ACS Appl. Mater. Interfaces 13(38), 45201–45213 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. Yu, H., Li, Y., Zhang, Z., Ren, J., Zhang, L., Xu, Z., Kang, Y., Xue, P.: Silk fibroin-capped metal–organic framework for tumor-specific redox dyshomeostasis treatment synergized by deoxygenation-driven chemotherapy. Acta Biomater. 138, 545–560 (2021)

    Article  PubMed  Google Scholar 

  51. Zhao, H., Xu, J.B., Feng, C., Ren, J.Y., Bao, L., Zhao, Y.B., Tao, W., Zhao, Y.L., Yang, X.L.: Tailoring aggregation extent of photosensitizer to boost phototherapy potency for eliciting systemic antitumor immunity. Adv. Mater. 34(8), 2106390 (2021)

    Article  Google Scholar 

  52. Huang, B., Tian, J., Jiang, D., Gao, Y., Zhang, W.: NIR-activated “OFF/ON” Photodynamic therapy by a hybrid nanoplatform with upper critical solution temperature block copolymers and gold nanorods. Biomacromol 20(10), 3873–3883 (2019)

    Article  CAS  Google Scholar 

  53. Tian, X.-T., Cao, P.-P., Zhang, H., Li, Y.-H., Yin, X.-B.: GSH-activated MRI-guided enhanced photodynamic-and chemo-combination therapy with a MnO2-coated porphyrin metal organic framework. ChemComm 55(44), 6241–6244 (2019)

    CAS  Google Scholar 

  54. Lismont, M., Dreesen, L., Wuttke, S.: Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives. Adv. Funct. Mater. 27(14), 1606314 (2017)

    Article  Google Scholar 

  55. Judzewitsch, P.R., Corrigan, N., Wong, E.H., Boyer, C.: Photo-enhanced antimicrobial activity of polymers containing an embedded photosensitiser. Angew. Chem. 133(45), 24450–24458 (2021)

    Article  ADS  Google Scholar 

  56. Zeng, J.-Y., Zou, M.-Z., Zhang, M., Wang, X.-S., Zeng, X., Cong, H., Zhang, X.-Z.: π-extended benzoporphyrin-based metal–organic framework for inhibition of tumor metastasis. ACS Nano 12(5), 4630–4640 (2018)

    Article  CAS  PubMed  Google Scholar 

  57. Lo, P.-C., Rodríguez-Morgade, M.S., Pandey, R.K., Ng, D.K., Torres, T., Dumoulin, F.: The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 49(4), 1041–1056 (2020)

    Article  CAS  PubMed  Google Scholar 

  58. Babu, B., Mack, J., Nyokong, T.: Sn (iv) N-confused porphyrins as photosensitizer dyes for photodynamic therapy in the near IR region. Dalton Trans. 49(43), 15180–15183 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. Guo, X., Li, X., Liu, X.-C., Li, P., Yao, Z., Li, J., Zhang, W., Zhang, J.-P., Xue, D., Cao, R.: Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers. ChemComm 54(7), 845–848 (2018)

    CAS  Google Scholar 

  60. Montoya, S.C.N., Comini, L.R., Sarmiento, M., Becerra, C., Albesa, I., Argüello, G.A., Cabrera, J.L.: Natural anthraquinones probed as Type I and Type II photosensitizers: singlet oxygen and superoxide anion production. J. Photochem. Photobiol. B Biol. 78(1), 77–83 (2005)

    Article  Google Scholar 

  61. Hadjur, C., Wagnières, G., Ihringer, F., Monnier, P., van den Bergh, H.: Production of the free radicals O.-2 and .OH by irradiation of the photosensitizer zinc (II) phthalocyanine. J. Photochem. Photobiol. B Biol. 38(2–3), 196–202 (1997)

  62. Nardin, C., Peres, C., Mazzarda, F., Ziraldo, G., Salvatore, A.M., Mammano, F.: Photosensitizer activation drives apoptosis by interorganellar Ca2+ transfer and superoxide production in bystander cancer cells. Cells 8(10), 1175 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baier, J., Maisch, T., Maier, M., Engel, E., Landthaler, M., Bäumler, W.: Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 91(4), 1452–1459 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tsay, J.M., Trzoss, M., Shi, L., Kong, X., Selke, M., Jung, M.E., Weiss, S.: Singlet oxygen production by peptide-coated quantum dot− photosensitizer conjugates. J. Am. Chem. Soc. 129(21), 6865–6871 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, D., Lee, M.M.S., Shan, G., Kwok, R.T.K., Lam, J.W.Y., Su, H., Cai, Y., Tang, B.Z.: Highly efficient photosensitizers with far-red/near-infrared aggregation-induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 30(39), 1802105 (2018)

    Article  Google Scholar 

  66. Wang, Y., Wu, W., Liu, J., Manghnani, P.N., Hu, F., Ma, D., Teh, C., Wang, B., Liu, B.: Cancer-cell-activated photodynamic therapy assisted by Cu (II)-based metal–organic framework. ACS Nano 13(6), 6879–6890 (2019)

    Article  CAS  PubMed  Google Scholar 

  67. Abrahams, B.F., Hoskins, B.F., Robson, R.: A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks. J. Am. Chem. Soc. 113(9), 3606–3607 (1991)

    Article  CAS  Google Scholar 

  68. Muniappan, S., Lipstman, S., George, S., Goldberg, I.: Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra (carboxyphenyl) porphyrins and lanthanide-bridging ions. Inorg. Chem. 46(14), 5544–5554 (2007)

    Article  CAS  PubMed  Google Scholar 

  69. Qin, J.-S., Du, D.-Y., Li, M., Lian, X.-Z., Dong, L.-Z., Bosch, M., Su, Z.-M., Zhang, Q., Li, S.-L., Lan, Y.-Q.: Derivation and decoration of nets with trigonal-prismatic nodes: a unique route to reticular synthesis of metal–organic frameworks. J. Am. Chem. Soc. 138(16), 5299–5307 (2016)

    Article  CAS  PubMed  Google Scholar 

  70. Huang, Q., Li, Q., Liu, J., Wang, R., Lan, Y.-Q.: Disclosing CO2 activation mechanism by hydroxyl-induced crystalline structure transformation in electrocatalytic process. Matter 1(6), 1656–1668 (2019)

    Article  Google Scholar 

  71. Wang, Z., Zhu, C.-Y., Zhao, H.-S., Yin, S.-Y., Wang, S.-J., Zhang, J.-H., Jiang, J.-J., Pan, M., Su, C.-Y.: Record high cationic dye separation performance for water sanitation using a neutral coordination framework. J. Mater. Chem. A 7(9), 4751–4758 (2019)

    Article  CAS  Google Scholar 

  72. Dong, Y.-L., Xu, L., Yang, X.-D., Su, Z., Liu, H.-K.: A highly ruffled distorted nickel-imidazolylporphyrin framework with 1D open nano-sized channels. Inorg. ChemComm. 104, 14–18 (2019)

    Article  CAS  Google Scholar 

  73. Suslick, K.S., Bhyrappa, P., Chou, J.-H., Kosal, M.E., Nakagaki, S., Smithenry, D.W., Wilson, S.R.: Microporous porphyrin solids. Acc. Chem. Res. 38(4), 283–291 (2005)

    Article  CAS  PubMed  Google Scholar 

  74. Cao, M., Pang, R., Wang, Q.-Y., Han, Z., Wang, Z.-Y., Dong, X.-Y., Li, S.-F., Zang, S.-Q., Mak, T.C.: Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 141(37), 14505–14509 (2019)

    Article  CAS  PubMed  Google Scholar 

  75. Lu, K., He, C., Lin, W.: Nanoscale metal–organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 136(48), 16712–16715 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rieter, W.J., Taylor, K.M., An, H., Lin, W., Lin, W.: Nanoscale metal− organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128(28), 9024–9025 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simon-Yarza, T., Mielcarek, A., Couvreur, P., Serre, C.: Nanoparticles of metal–organic frameworks: on the road to in vivo efficacy in biomedicine. Adv. Mater. 30(37), 1707365 (2018)

    Article  Google Scholar 

  78. Arun Kumar, S., Balasubramaniam, B., Bhunia, S., Jaiswal, M.K., Verma, K., Khademhosseini, A., Gupta, R.K., Gaharwar, A.K.: Two-dimensional metal organic frameworks for biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 13(2), e1674 (2021)

    Article  CAS  PubMed  Google Scholar 

  79. Beg, S., Rahman, M., Jain, A., Saini, S., Midoux, P., Pichon, C., Ahmad, F.J., Akhter, S.: Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications. Drug Discov. Today 22(4), 625–637 (2017)

    Article  CAS  PubMed  Google Scholar 

  80. Jiang, Y., Pan, X., Yao, M., Han, L., Zhang, X., Jia, Z., Weng, J., Chen, W., Fang, L., Wang, X.: Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021)

    Article  CAS  Google Scholar 

  81. Huang, G., Yan, Y., Xu, D., Wu, J., Xu, C., Fu, L., Lin, B.: Curcumin-loaded nanoMOFs@ CMFP: a biological preserving paste with antibacterial properties and long-acting, controllable release. Food Chem. 337, 127987 (2021)

    Article  CAS  PubMed  Google Scholar 

  82. Qiu, J., Li, X., Rezaei, M., Patriarche, G., Casas-Solvas, J.M., Moreira-Alvarez, B., Fernandez, J.M.C., Encinar, J.R., Savina, F., Picton, L.: Porous nanoparticles with engineered shells release their drug cargo in cancer cells. Int. J. Pharm. 610, 121230 (2021)

    Article  CAS  PubMed  Google Scholar 

  83. Li, H., Lv, N., Li, X., Liu, B., Feng, J., Ren, X., Guo, T., Chen, D., Stoddart, J.F., Gref, R.: Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 9(22), 7454–7463 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. Xu, X., Chen, Y., Zhang, Y., Yao, Y., Ji, P.: Highly stable and biocompatible hyaluronic acid-rehabilitated nanoscale MOF-Fe2+ induced ferroptosis in breast cancer cells. J. Mater. Chem. B 8(39), 9129–9138 (2020)

    Article  CAS  Google Scholar 

  85. Della Rocca, J., Liu, D., Lin, W.: Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44(10), 957–968 (2011)

    Article  CAS  PubMed  Google Scholar 

  86. Flügel, E.A., Ranft, A., Haase, F., Lotsch, B.V.: Synthetic routes toward MOF nanomorphologies. J. Mater. Chem. 22(20), 10119–10133 (2012)

    Article  Google Scholar 

  87. Liu, J., Yang, Y., Zhu, W., Yi, X., Dong, Z., Xu, X., Chen, M., Yang, K., Lu, G., Jiang, L.: Nanoscale metal− organic frameworks for combined photodynamic and radiation therapy in cancer treatment. Biomaterials 97, 1–9 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  88. Miller, S.R., Heurtaux, D., Baati, T., Horcajada, P., Grenèche, J.-M., Serre, C.: Biodegradable therapeutic MOFs for the delivery of bioactive molecules. ChemComm. 46(25), 4526–4528 (2010)

    CAS  Google Scholar 

  89. Sharma, S., Mittal, D., Verma, A.K., Roy, I.: Copper-gallic acid nanoscale metal–organic framework for combined drug delivery and photodynamic therapy. ACS Appl. Bio Mater. 2(5), 2092–2101 (2019)

    Article  CAS  PubMed  Google Scholar 

  90. Yang, Y., Liu, J., Liang, C., Feng, L., Fu, T., Dong, Z., Chao, Y., Li, Y., Lu, G., Chen, M.: Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 10(2), 2774–2781 (2016)

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, H., Tian, X.-T., Shang, Y., Li, Y.-H., Yin, X.-B.: Theranostic Mn-porphyrin metal–organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy. ACS Appl. Mater. Interfaces 10(34), 28390–28398 (2018)

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, L., Lei, J., Ma, F., Ling, P., Liu, J., Ju, H.: A porphyrin photosensitized metal–organic framework for cancer cell apoptosis and caspase responsive theranostics. ChemComm 51(54), 10831–10834 (2015)

    CAS  Google Scholar 

  93. Rabiee, N., Yaraki, M.T., Garakani, S.M., Garakani, S.M., Ahmadi, S., Lajevardi, A., Bagherzadeh, M., Rabiee, M., Tayebi, L., Tahriri, M.: Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 232, 119707 (2020)

    Article  CAS  PubMed  Google Scholar 

  94. Gao, W.-Y., Chrzanowski, M., Ma, S.: Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chem. Soc. Rev. 43(16), 5841–5866 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Chen, J., Zhu, Y., Kaskel, S.: Porphyrin-based metal–organic frameworks for biomedical applications. Angew. Chem. Int. Ed. 60(10), 5010–5035 (2021)

    Article  CAS  Google Scholar 

  96. Xie, B.-R., Li, C.-X., Yu, Y., Zeng, J.-Y., Zhang, M.-K., Wang, X.-S., Zeng, X., Zhang, X.-Z.: A singlet oxygen reservoir based on poly-pyridone and porphyrin nanoscale metal–organic framework for cancer therapy. CCS Chem. 3, 1187–1202 (2020)

    Article  Google Scholar 

  97. Zhang, X., Wasson, M.C., Shayan, M., Berdichevsky, E.K., Ricardo-Noordberg, J., Singh, Z., Papazyan, E.K., Castro, A.J., Marino, P., Ajoyan, Z.: A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coord. Chem. Rev. 429, 213615 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  98. Vitillo, J.G., Bordiga, S.: Increasing the stability of Mg2(dobpdc) metal–organic framework in air through solvent removal. Mater. Chem. Front. 1(3), 444–448 (2017)

    Article  CAS  Google Scholar 

  99. Shearer, G.C., Forselv, S., Chavan, S., Bordiga, S., Mathisen, K., Bjørgen, M., Svelle, S., Lillerud, K.P.: In situ infrared spectroscopic and gravimetric characterisation of the solvent removal and dehydroxylation of the metal organic frameworks UiO-66 and UiO-67. Top. Catal. 56(9–10), 770–782 (2013)

    Article  CAS  Google Scholar 

  100. Ma, L., Mihalcik, D.J., Lin, W.: Highly porous and robust 4, 8-connected metal−organic frameworks for hydrogen storage. J. Am. Chem. Soc. 131(13), 4610–4612 (2009)

    Article  CAS  PubMed  Google Scholar 

  101. Tan, Y.-X., He, Y.-P., Zhang, J.: Tuning MOF stability and porosity via adding rigid pillars. Inorg. Chem. 51(18), 9649–9654 (2012)

    Article  CAS  PubMed  Google Scholar 

  102. Hönicke, I.M., Senkovska, I., Bon, V., Baburin, I.A., Bönisch, N., Raschke, S., Evans, J.D., Kaskel, S.: Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew. Chem. Int. Ed. 57(42), 13780–13783 (2018)

    Article  Google Scholar 

  103. Farha, O.K., Shultz, A.M., Sarjeant, A.A., Nguyen, S.T., Hupp, J.T.: Active-site-accessible, Porphyrinic metal−organic framework materials. J. Am. Chem. Soc. 133(15), 5652–5655 (2011)

    Article  CAS  PubMed  Google Scholar 

  104. Fateeva, A., Clarisse, J., Pilet, G., Grenèche, J.-M., Nouar, F., Abeykoon, B.K., Guegan, F.D.R., Goutaudier, C., Luneau, D., Warren, J.E.: Iron and porphyrin metal–organic frameworks: insight into structural diversity, stability, and porosity. Cryst. Growth Des. 15(4), 1819–1826 (2015)

    Article  CAS  Google Scholar 

  105. Dutta, G., Jana, A.K., Singh, D.K., Eswaramoorthy, M., Natarajan, S.: Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal–organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure. Chem. Asian J. 13(18), 2677–2684 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. Fateeva, A., Devautour-Vinot, S., Heymans, N., Devic, T., Greneche, J.-M., Wuttke, S., Miller, S., Lago, A., Serre, C., De Weireld, G.: Series of porous 3-D coordination polymers based on iron (III) and porphyrin derivatives. Chem. Mater. 23(20), 4641–4651 (2011)

    Article  CAS  Google Scholar 

  107. Mamardashvili, G.M., Mamardashvili, N.Z., Berezin, B.D.: Solubility of alkylporphyrins. Molecules 5(6), 762–766 (2000)

    Article  CAS  Google Scholar 

  108. Deda, D.K., Iglesias, B.A., Alves, E., Araki, K., Garcia, C.R.: Porphyrin derivative nanoformulations for therapy and antiparasitic agents. Molecules 25(9), 2080 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sobczyński, J., Tønnesen, H., Kristensen, S.: Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements. Pharmazie- Int. J. Pharm. Sci. 68(2), 100–109 (2013)

    Google Scholar 

  110. Kano, K., Fukuda, K., Wakami, H., Nishiyabu, R., Pasternack, R.F.: Factors influencing self-aggregation tendencies of cationic porphyrins in aqueous solution. J. Am. Chem. Soc. 122(31), 7494–7502 (2000)

    Article  CAS  Google Scholar 

  111. Ou, Z.-M., Yao, H., Kimura, K.: Preparation and optical properties of organic nanoparticles of porphyrin without self-aggregation. J. Photochem. Photobiol. A: Chem. 189(1), 7–14 (2007)

    Article  CAS  Google Scholar 

  112. dos Santos, F.A., Uchoa, A.F., Baptista, M.S., Iamamoto, Y., Serra, O.A., Brocksom, T.J., de Oliveira, K.T.: Synthesis of functionalized chlorins sterically-prevented from self-aggregation. Dyes Pigm. 99(2), 402–411 (2013)

    Article  Google Scholar 

  113. Toncelli, C., Pino-Pinto, J.P., Sano, N., Picchioni, F., Broekhuis, A.A., Nishide, H., Moreno-Villoslada, I.: Controlling the aggregation of 5, 10, 15, 20-tetrakis-(4-sulfonatophenyl)-porphyrin by the use of polycations derived from polyketones bearing charged aromatic groups. Dyes Pigm. 98(1), 51–63 (2013)

    Article  CAS  Google Scholar 

  114. Konishi, T., Ikeda, A., Asai, M., Hatano, T., Shinkai, S., Fujitsuka, M., Ito, O., Tsuchiya, Y., Kikuchi, J.-I.: Improvement of quantum yields for photoinduced energy/electron transfer by isolation of self-aggregative zinc tetraphenyl porphyrin-pendant polymer using cyclodextrin inclusion in aqueous solution. J. Phys. Chem. B 107(41), 11261–11266 (2003)

    Article  CAS  Google Scholar 

  115. Lv, X.-L., Wang, K., Wang, B., Su, J., Zou, X., Xie, Y., Li, J.-R., Zhou, H.-C.: A base-resistant metalloporphyrin metal–organic framework for C-H bond halogenation. J. Am. Chem. Soc. 139(1), 211–217 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, Y., Wang, F., Liu, C., Wang, Z., Kang, L., Huang, Y., Dong, K., Ren, J., Qu, X.: Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS Nano 12(1), 651–661 (2018)

    Article  CAS  PubMed  Google Scholar 

  117. Enakieva, Y.Y., Sinelshchikova, A.A., Grigoriev, M.S., Chernyshev, V.V., Kovalenko, K.A., Stenina, I.A., Yaroslavtsev, A.B., Gorbunova, Y.G., Tsivadze, A.Y.: Highly proton-conductive zinc metal–organic framework based on nickel (II) porphyrinylphosphonate. Chem. Eur. J. 25(45), 10552–10556 (2019)

    Article  CAS  PubMed  Google Scholar 

  118. Le Gac, S., Ndoyom, V., Fusaro, L., Dorcet, V., Boitrel, B.: Hg (II)-mediated Tl (I)-to-Tl (III) oxidation in dynamic Pb (II)/Tl porphyrin complexes. Chem. Eur. J. 25(3), 845–853 (2019)

    Article  PubMed  Google Scholar 

  119. ZareKarizi, F., Joharian, M., Morsali, A.: Pillar-layered MOFs: functionality, interpenetration, flexibility and applications. J. Mater. Chem. A 6(40), 19288–19329 (2018)

    Article  CAS  Google Scholar 

  120. Sakuma, T., Sakai, H., Araki, Y., Wada, T., Hasobe, T.: Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination. Phys. Chem. Chem. Phys. 18(7), 5453–5463 (2016)

    Article  CAS  PubMed  Google Scholar 

  121. Barron, P.M., Wray, C.A., Hu, C., Guo, Z., Choe, W.: A bioinspired synthetic approach for building metal− organic frameworks with accessible metal centers. Inorg. Chem. 49(22), 10217–10219 (2010)

    Article  CAS  PubMed  Google Scholar 

  122. Lee, C.Y., Farha, O.K., Hong, B.J., Sarjeant, A.A., Nguyen, S.T., Hupp, J.T.: Light-harvesting metal–organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 133(40), 15858–15861 (2011)

    Article  CAS  PubMed  Google Scholar 

  123. Xie, M.H., Yang, X.L., He, Y., Zhang, J., Chen, B., Wu, C.D.: Highly efficient C–H oxidative activation by a porous MnIII–porphyrin metal–organic framework under mild conditions. Chem. Eur. J. 19(42), 14316–14321 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. Mishra, M.K., Choudhary, H., Cordes, D.B., Kelley, S.P., Rogers, R.D.: Structural diversity in tetrakis (4-pyridyl) porphyrin supramolecular building blocks. Cryst. Growth Des. 19(6), 3529–3542 (2019)

    Article  CAS  Google Scholar 

  125. Johnson, J.A., Petersen, B.M., Kormos, A., Echeverría, E., Chen, Y.-S., Zhang, J.: A new approach to non-coordinating anions: lewis acid enhancement of porphyrin metal centers in a zwitterionic metal–organic framework. J. Am. Chem. Soc. 138(32), 10293–10298 (2016)

    Article  CAS  PubMed  Google Scholar 

  126. Maares, M., Ayhan, M.M., Yu, K.B., Yazaydin, A.O., Harmandar, K., Haase, H., Beckmann, J., Zorlu, Y., Yücesan, G.: Alkali phosphonate metal–organic frameworks. Chem. Eur. J. 25(48), 11214–11217 (2019)

    Article  CAS  PubMed  Google Scholar 

  127. Fang, Y., Jiang, X., Kadish, K.M., Nefedov, S.E., Kirakosyan, G.A., Enakieva, Y.Y., Gorbunova, Y.G., Tsivadze, A.Y., Stern, C., Bessmertnykh-Lemeune, A.: Electrochemical, spectroelectrochemical, and structural studies of mono-and diphosphorylated zinc porphyrins and their self-assemblies. Inorg. Chem. 58(7), 4665–4678 (2019)

    Article  CAS  PubMed  Google Scholar 

  128. Shmilovits, M., Vinodu, M., Goldberg, I.: Coordination polymers of tetra (4-carboxyphenyl) porphyrins sustained by tetrahedral zinc ion linkers. Cryst. Growth Des. 4(3), 633–638 (2004)

    Article  CAS  Google Scholar 

  129. Diskin-Posner, Y., Goldberg, I.: Porphyrin sieves. Designing open networks of tetra (carboxyphenyl) porphyrins by extended coordination through sodium ion auxiliaries. New J. Chem. 25(7), 899–904 (2001)

    Article  CAS  Google Scholar 

  130. Kosal, M.E., Chou, J.-H., Suslick, K.S.: A calcium-bridged porphyrin coordination network. J. Porphyr. Phthalocyanines 6(06), 377–381 (2002)

    Article  CAS  Google Scholar 

  131. Diskin-Posner, Y., Dahal, S., Goldberg, I.: Crystal engineering of metalloporphyrin zeolite analogues. Angew. Chem. 112(7), 1344–1348 (2000)

    Article  ADS  Google Scholar 

  132. Diskin-Posner, Y., Dahal, S., Goldberg, I.: New effective synthons for supramolecular self-assembly of meso-carboxyphenylporphyrins. ChemComm 7, 585–586 (2000)

    Google Scholar 

  133. Diskin-Posner, Y., Patra, G.K., Goldberg, I.: Crystal engineering of 2-D and 3-D multiporphyrin architectures—the versatile topologies of tetracarboxyphenylporphyrin-based materials. Eur. J. Inorg. Chem. 2001(10), 2515–2523 (2001)

    Article  Google Scholar 

  134. Shmilovits, M., Diskin-Posner, Y., Vinodu, M., Goldberg, I.: Crystal engineering of “porphyrin sieves” based on coordination polymers of Pd-and Pt-tetra (4-carboxyphenyl) porphyrin. Cryst. Growth Des. 3(5), 855–863 (2003)

    Article  CAS  Google Scholar 

  135. Zou, C., Xie, M.-H., Kong, G.-Q., Wu, C.-D.: Five porphyrin-core-dependent metal–organic frameworks and framework-dependent fluorescent properties. CrystEngComm 14(14), 4850–4856 (2012)

    Article  CAS  Google Scholar 

  136. Chen, W.: Hydrothermal preparation, crystal structure and properties of {[ZnTCPP (EtOH)][Zn (en)]2}n (EtOH)2n with a novel two-dimensional (2-D) Motif. Chin. J. Chem. 30(2), 273–276 (2012)

    Article  ADS  CAS  Google Scholar 

  137. Amayuelas, E., Fidalgo-Marijuan, A., Bazan, B., Urtiaga, M.K., Barandika, G., Lezama, L., Arriortua, M.I.: Cationic Mn2+/H+ exchange leading a slow solid-state transformation of a 2D porphyrinic network at ambient conditions. J. Solid State Chem. 247, 161–167 (2017)

    Article  ADS  CAS  Google Scholar 

  138. George, S., Lipstman, S., Goldberg, I.: Porphyrin supramolecular solids assembled with the aid of lanthanide ions. Cryst. Growth Des. 6(12), 2651–2654 (2006)

    Article  CAS  Google Scholar 

  139. Lipstman, S., Goldberg, I.: 2D and 3D coordination networks of tetra (carboxyphenyl)-porphyrins with cerium and thulium ions. J. Mol. Struct. 890(1–3), 101–106 (2008)

    Article  ADS  CAS  Google Scholar 

  140. George, S., Goldberg, I.: Crystal structure of catena-tris (5, 10, 15, 20-(4-carboxylatophenyl)-porphyrin)-aqua-tetradysprosium-trizinc solvate, (C48H24N4O8Zn)3Dy4 (H2O)·(solvent)x. Z. Krist.-New Cryst. St. 226(3),411–413 (2011)

  141. Rhauderwiek, T., Heidenreich, N., Reinsch, H., Øien-Ødegaard, S., Lomachenko, K.A., Rütt, U., Soldatov, A.V., Lillerud, K.P., Stock, N.: Co-ligand dependent formation and phase transformation of four porphyrin-based cerium metal–organic frameworks. Cryst. Growth Des. 17(6), 3462–3474 (2017)

    Article  CAS  Google Scholar 

  142. Choi, E.-Y., Wray, C.A., Hu, C., Choe, W.: Highly tunable metal–organic frameworks with open metal centers. CrystEngComm 11(4), 553–555 (2009)

    Article  CAS  Google Scholar 

  143. Makiura, R., Usui, R., Pohl, E., Prassides, K.: Porphyrin-based coordination polymer composed of layered pillarless two-dimensional networks. Chem. Lett. 43(7), 1161–1163 (2014)

    Article  CAS  Google Scholar 

  144. Gallagher, A.T., Kelty, M.L., Park, J.G., Anderson, J.S., Mason, J.A., Walsh, J.P., Collins, S.L., Harris, T.D.: Dioxygen binding at a four-coordinate cobaltous porphyrin site in a metal–organic framework: structural, EPR, and O2 adsorption analysis. Inorg. Chem. Front. 3(4), 536–540 (2016)

    Article  CAS  Google Scholar 

  145. Anderson, J.S., Gallagher, A.T., Mason, J.A., Harris, T.D.: A five-coordinate heme dioxygen adduct isolated within a metal–organic framework. J. Am. Chem. Soc. 136(47), 16489–16492 (2014)

    Article  CAS  PubMed  Google Scholar 

  146. Gallagher, A.T., Malliakas, C.D., Harris, T.D.: CO binding at a four-coordinate cobaltous porphyrin site in a metal–organic framework: structural, EPR, and Gas Adsorption Analysis. Inorg. Chem. 56(8), 4654–4661 (2017)

    Article  Google Scholar 

  147. Dolgopolova, E.A., Williams, D.E., Greytak, A.B., Rice, A.M., Smith, M.D., Krause, J.A., Shustova, N.B.: A bio-inspired approach for chromophore communication: ligand-to-ligand and host-to-guest energy transfer in hybrid crystalline scaffolds. Angew. Chem. Int. Ed. 54(46), 13639–13643 (2015)

    Article  CAS  Google Scholar 

  148. Park, K.C., Seo, C., Gupta, G., Kim, J., Lee, C.Y.: Efficient energy transfer (EnT) in pyrene-and porphyrin-based mixed-ligand metal–organic frameworks. ACS Appl. Mater. Interfaces 9(44), 38670–38677 (2017)

    Article  CAS  PubMed  Google Scholar 

  149. Yang, Y., Ishida, M., Yasutake, Y., Fukatsu, S., Fukakusa, C., Morikawa, M.-A., Yamada, T., Kimizuka, N., Furuta, H.: Hierarchical hybrid metal–organic frameworks: tuning the visible/near-infrared optical properties by a combination of porphyrin and its isomer units. Inorg. Chem. 58(7), 4647–4656 (2019)

    Article  CAS  PubMed  Google Scholar 

  150. Lu, K., He, C., Guo, N., Chan, C., Ni, K., Lan, G., Tang, H., Pelizzari, C., Fu, Y.-X., Spiotto, M.T.: Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2(8), 600–610 (2018)

    Article  CAS  PubMed  Google Scholar 

  151. Xu, X., Li, S., Liu, Q., Liu, Z., Yan, W., Zhao, L., Zhang, W., Zhang, L., Deng, F., Cong, H.: Isolated π-interaction sites in mesoporous MOF backbone for repetitive and reversible dynamics in water. ACS Appl. Mater. Interfaces 11(1), 973–981 (2018)

    Article  CAS  PubMed  Google Scholar 

  152. Tripuramallu, B.K., Titi, H.M., Goswami, S., Phukan, N.: Location controlled symmetry reduction: paradigm of an open metalloporphyrin framework based on the tetracarboxy porphyrin linker. CrystEngComm 21(35), 5216–5221 (2019)

    Article  CAS  Google Scholar 

  153. Rönfeldt, P., Reinsch, H., Poschmann, M.P.M., Terraschke, H., Stock, N.: Scandium metal–organic frameworks containing tetracarboxylate linker molecules: synthesis, structural relationships, and properties. Cryst. Growth Des. 20(7), 4686–4694 (2020)

    Article  Google Scholar 

  154. Barron, P.M., Son, H.-T., Hu, C., Choe, W.: Highly tunable heterometallic frameworks constructed from paddle-wheel units and metalloporphyrins. Cryst. Growth Des. 9(4), 1960–1965 (2009)

    Article  CAS  Google Scholar 

  155. Martinez-Bulit, P., O’Keefe, C.A., Zhu, K., Schurko, R.W., Loeb, S.J.: Solvent and steric influences on rotational dynamics in porphyrinic metal–organic frameworks with mechanically interlocked pillars. Cryst. Growth Des. 19(10), 5679–5685 (2019)

    Article  CAS  Google Scholar 

  156. Zhang, L., Yuan, S., Feng, L., Guo, B., Qin, J.S., Xu, B., Lollar, C., Sun, D., Zhou, H.C.: Pore-environment engineering with multiple metal sites in rare-earth porphyrinic metal–organic frameworks. Angew. Chem. Int. Ed. 57(18), 5095–5099 (2018)

    Article  CAS  Google Scholar 

  157. Lipstman, S., Muniappan, S., George, S., Goldberg, I.: Framework coordination polymers of tetra (4-carboxyphenyl) porphyrin and lanthanide ions in crystalline solids. Dalton Trans. 30, 3273–3281 (2007)

    Article  Google Scholar 

  158. Choi, E.-Y., Barron, P.M., Novotny, R.W., Son, H.-T., Hu, C., Choe, W.: Pillared porphyrin homologous series: intergrowth in metal− organic frameworks. Inorg. Chem. 48(2), 426–428 (2009)

    Article  CAS  PubMed  Google Scholar 

  159. Ding, Y., Chen, Y.-P., Zhang, X., Chen, L., Dong, Z., Jiang, H.-L., Xu, H., Zhou, H.-C.: Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139(27), 9136–9139 (2017)

    Article  CAS  PubMed  Google Scholar 

  160. Burnett, B.J., Barron, P.M., Hu, C., Choe, W.: Stepwise synthesis of metal–organic frameworks: replacement of structural organic linkers. J. Am. Chem. Soc. 133(26), 9984–9987 (2011)

    Article  CAS  PubMed  Google Scholar 

  161. Planes, O.L.M., Schouwink, P.A., Bila, J.L., Fadaei-Tirani, F., Scopelliti, R., Severin, K.: Incorporation of clathrochelate-based metalloligands in metal–organic frameworks by solvent-assisted ligand exchange. Cryst. Growth Des. 20(3), 1394–1399 (2020)

    Article  CAS  Google Scholar 

  162. Liu, G., Cui, H., Wang, S., Zhang, L., Su, C.-Y.: A series of highly stable porphyrinic metal–organic frameworks based on iron–oxo chain clusters: design, synthesis and biomimetic catalysis. J. Mater. Chem. A 8(17), 8376–8382 (2020)

    Article  ADS  CAS  Google Scholar 

  163. Nefedov, S.E., Birin, K.P., Bessmertnykh-Lemeune, A., Enakieva, Y.Y., Sinelshchikova, A.A., Gorbunova, Y.G., Tsivadze, A.Y., Stern, C., Fang, Y., Kadish, K.M.: Coordination self-assembly through weak interactions in meso-dialkoxyphosphoryl-substituted zinc porphyrinates. Dalton Trans. 48(16), 5372–5383 (2019)

    Article  CAS  PubMed  Google Scholar 

  164. Mitrofanov, A.Y., Rousselin, Y., Khrustalev, V.N., Cheprakov, A.V., Bessmertnykh-Lemeune, A., Beletskaya, I.P.: Facile synthesis and self-assembly of zinc (2-Diethoxyphosphorylethynyl) porphyrins. Eur. J. Inorg. Chem. 2019(10), 1313–1328 (2019)

    Article  CAS  Google Scholar 

  165. Wang, K., Lv, X.-L., Feng, D., Li, J., Chen, S., Sun, J., Song, L., Xie, Y., Li, J.-R., Zhou, H.-C.: Pyrazolate-based porphyrinic metal–organic framework with extraordinary base-resistance. J. Am. Chem. Soc. 138(3), 914–919 (2016)

    Article  CAS  PubMed  Google Scholar 

  166. Lu, K., He, C., Lin, W.: A chlorin-based nanoscale metal–organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 137(24), 7600–7603 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Feng, X., Wang, X., Wang, H., Wu, H., Liu, Z., Zhou, W., Lin, Q., Jiang, J.: Elucidating J-aggregation effect in boosting singlet-oxygen evolution using zirconium-porphyrin frameworks: a comprehensive structural, catalytic, and spectroscopic study. ACS Appl. Mater. Interfaces 11(48), 45118–45125 (2019)

    Article  CAS  PubMed  Google Scholar 

  168. He, W.L., Zhao, M., Wu, C.D.: A versatile metalloporphyrinic framework platform for highly efficient bioinspired, photo-and asymmetric catalysis. Angew. Chem. Int. Ed. 58(1), 168–172 (2019)

    Article  CAS  Google Scholar 

  169. Abdulaeva, I.A., Birin, K.P., Sinelshchikova, A.A., Grigoriev, M.S., Lyssenko, K.A., Gorbunova, Y.G., Tsivadze, A.Y., Bessmertnykh-Lemeune, A.: Imidazoporphyrins as supramolecular tectons: synthesis and self-assembly of zinc 2-(4-pyridyl)-1 H-imidazo [4, 5-b] porphyrinate. CrystEngComm 21(9), 1488–1498 (2019)

    Article  CAS  Google Scholar 

  170. Dhamija, A., Saha, B., Chandel, D., Malik, H., Rath, S.P.: Molecule to supramolecule: chirality induction, inversion, and amplification in a Mg (II) porphyrin Dimer templated by Chiral Diols. Inorg. Chem. 59(1), 801–809 (2019)

    Article  PubMed  Google Scholar 

  171. Battistin, F., Vidal, A., Cavigli, P., Balducci, G., Iengo, E., Alessio, E.: Orthogonal coordination chemistry of PTA toward Ru (II) and Zn (II)(PTA= 1, 3, 5-Triaza-7-phosphaadamantane) for the construction of 1D and 2D metal-mediated porphyrin networks. Inorg. Chem. 59(6), 4068–4079 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Niu, R.-J., Zhou, W.-F., Liu, Y., Yang, J.-Y., Zhang, W.-H., Lang, J.-P., Young, D.J.: Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal–organic framework with a porphyrinic skeleton. ChemComm 55(33), 4873–4876 (2019)

    CAS  Google Scholar 

  173. Wan, S.-S., Zeng, J.-Y., Cheng, H., Zhang, X.-Z.: ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor. Biomaterials 185, 51–62 (2018)

    Article  CAS  PubMed  Google Scholar 

  174. Zhou, G., Wang, Y.S., Jin, Z., Zhao, P., Zhang, H., Wen, Y., He, Q.: Porphyrin–palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horiz. 4(5), 1185–1193 (2019)

    Article  ADS  CAS  Google Scholar 

  175. Luo, Z., Jiang, L., Yang, S., Li, Z., Soh, W.M.W., Zheng, L., Loh, X.J., Wu, Y.L.: Light-Induced redox-responsive smart drug delivery system by using selenium-containing polymer@ MOF shell/core nanocomposite. Adv. Healthc. Mater. 8(15), 1900406 (2019)

    Article  Google Scholar 

  176. Chun, N.Y., Kim, S.-N., Choi, Y.S., Choy, Y.B.: PCN-223 as a drug carrier for potential treatment of colorectal cancer. J. Ind. Eng. Chem. 84, 290–296 (2020)

    Article  CAS  Google Scholar 

  177. Shahriari, M., Taghdisi, S.M., Abnous, K., Ramezani, M., Alibolandi, M.: Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int. J. pharm. 572, 118835 (2019)

    Article  CAS  PubMed  Google Scholar 

  178. Bagheri, E., Abnous, K., Farzad, S.A., Taghdisi, S.M., Ramezani, M., Alibolandi, M.: Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 261, 118369 (2020)

    Article  CAS  PubMed  Google Scholar 

  179. Awwad, S., Angkawinitwong, U.: Overview of antibody drug delivery. Pharmaceutics 10(3), 83 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Araste, F., Abnous, K., Hashemi, M., Taghdisi, S.M., Ramezani, M., Alibolandi, M.: Peptide-based targeted therapeutics: focus on cancer treatment. J. Control. Release 292, 141–162 (2018)

    Article  CAS  PubMed  Google Scholar 

  181. Alibolandi, M., Abnous, K., Hadizadeh, F., Taghdisi, S.M., Alabdollah, F., Mohammadi, M., Nassirli, H., Ramezani, M.: Dextran-poly lactide-co-glycolide polymersomes decorated with folate-antennae for targeted delivery of docetaxel to breast adenocarcinima in vitro and in vivo. J. Control. Release 241, 45–56 (2016)

    Article  CAS  PubMed  Google Scholar 

  182. Zhang, Y., Wang, Q., Chen, G., Shi, P.: DNA-functionalized metal–organic framework: cell imaging, targeting drug delivery and photodynamic therapy. Inorg. Chem. 58(10), 6593–6596 (2019)

    Article  CAS  PubMed  Google Scholar 

  183. Lin, W., Hu, Q., Jiang, K., Yang, Y., Yang, Y., Cui, Y., Qian, G.: A porphyrin-based metal–organic framework as a pH-responsive drug carrier. J. Solid State Chem. 237, 307–312 (2016)

    Article  ADS  CAS  Google Scholar 

  184. Wang, Y., Liu, W., Yuan, B., Yin, X., Li, Y., Li, Z., Cui, J., Yuan, X., Li, Y.: The application of methylprednisolone nanoscale zirconium-porphyrin metal–organic framework (MPS-NPMOF) in the treatment of photoreceptor degeneration. Int. J. Nanomed. 14, 9763 (2019)

    Article  CAS  Google Scholar 

  185. Li, S.-Y., Cheng, H., Xie, B.-R., Qiu, W.-X., Zeng, J.-Y., Li, C.-X., Wan, S.-S., Zhang, L., Liu, W.-L., Zhang, X.-Z.: Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017)

    Article  CAS  PubMed  Google Scholar 

  186. Zhao, X., Zhang, Z., Cai, X., Ding, B., Sun, C., Liu, G., Hu, C., Shao, S., Pang, M.: Postsynthetic ligand exchange of metal–organic framework for photodynamic therapy. ACS Appl. Mater. Interfaces 11(8), 7884–7892 (2019)

    Article  CAS  PubMed  Google Scholar 

  187. He, L., Ni, Q., Mu, J., Fan, W., Liu, L., Wang, Z., Li, L., Tang, W., Liu, Y., Cheng, Y.: Solvent-assisted self-assembly of a metal–organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J. Am. Chem. Soc. 142(14), 6822–6832 (2020)

    Article  CAS  PubMed  Google Scholar 

  188. Li, S., Zhan, X., Bai, W., Zheng, J.: Controllable synthesis of Ni/Co-TCPP MOFs with different morphologies and their application in electrochemical detection of glucose. J. Electrochem. Soc. 167(12), 127506 (2020)

    Article  ADS  CAS  Google Scholar 

  189. Zhao, Y., Wang, J., Cai, X., Ding, P., Lv, H., Pei, R.: Metal–organic frameworks with enhanced photodynamic therapy: synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl. Mater. Interfaces 12(21), 23697–23706 (2020)

    Article  CAS  PubMed  Google Scholar 

  190. Wang, L., Qu, X., Zhao, Y., Weng, Y., Waterhouse, G.I., Yan, H., Guan, S., Zhou, S.: Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 11(38), 35228–35237 (2019)

    Article  CAS  PubMed  Google Scholar 

  191. Li, Y., Di, Z., Gao, J., Cheng, P., Di, C., Zhang, G., Liu, B., Shi, X., Sun, L.-D., Li, L.: Heterodimers made of upconversion nanoparticles and metal–organic frameworks. J. Am. Chem. Soc. 139(39), 13804–13810 (2017)

    Article  CAS  PubMed  Google Scholar 

  192. Zhou, L.-L., Guan, Q., Li, Y.-A., Zhou, Y., Xin, Y.-B., Dong, Y.-B.: One-pot synthetic approach toward porphyrinatozinc and heavy-atom involved Zr-NMOF and its application in photodynamic therapy. Inorg. Chem. 57(6), 3169–3176 (2018)

    Article  CAS  PubMed  Google Scholar 

  193. Li, S.-Y., Xie, B.-R., Cheng, H., Li, C.-X., Zhang, M.-K., Qiu, W.-X., Liu, W.-L., Wang, X.-S., Zhang, X.-Z.: A biomimetic theranostic O2-meter for cancer targeted photodynamic therapy and phosphorescence imaging. Biomaterials 151, 1–12 (2018)

    Article  PubMed  Google Scholar 

  194. Liu, C., Xing, J., Akakuru, O.U., Luo, L., Sun, S., Zou, R., Yu, Z., Fang, Q., Wu, A.: Nanozymes-engineered metal–organic frameworks for catalytic cascades-enhanced synergistic cancer therapy. Nano Lett. 19(8), 5674–5682 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  195. Zheng, X., Wang, L., Liu, M., Lei, P., Liu, F., Xie, Z.: Nanoscale mixed-component metal–organic frameworks with photosensitizer spatial-arrangement-dependent photochemistry for multimodal-imaging-guided photothermal therapy. Chem. Mater. 30(19), 6867–6876 (2018)

    Article  CAS  Google Scholar 

  196. Hollingworth, W., Todd, C.J., Bell, M.I., Arafat, Q., Girling, S., Karia, K.R., Dixon, A.K.: The diagnostic and therapeutic impact of MRI: an observational multi-centre study. Clin. Radiol. 55(11), 825–831 (2000)

    Article  CAS  PubMed  Google Scholar 

  197. Lee, C.I., Haims, A.H., Monico, E.P., Brink, J.A., Forman, H.P.: Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 231(2), 393–398 (2004)

    Article  PubMed  Google Scholar 

  198. De Ruysscher, D., Nestle, U., Jeraj, R., MacManus, M.: PET scans in radiotherapy planning of lung cancer. Lung Cancer 75(2), 141–145 (2012)

    Article  PubMed  Google Scholar 

  199. Shung, K.K.: Diagnostic ultrasound: past, present, and future. J. Med. Biol. Eng. 31(6), 371–374 (2011)

    Article  Google Scholar 

  200. Zhang, D., Ye, Z., Wei, L., Luo, H., Xiao, L.: Cell membrane-coated porphyrin metal–organic frameworks for cancer cell targeting and O2-evolving photodynamic therapy. ACS Appl. Mater. Interfaes 11(43), 39594–39602 (2019)

    Article  CAS  Google Scholar 

  201. Liu, W., Wang, Y.M., Li, Y.H., Cai, S.J., Yin, X.B., He, X.W., Zhang, Y.K.: Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework. Small 13(17), 1603459 (2017)

    Article  Google Scholar 

  202. Liu, Y., Gong, C.S., Dai, Y., Yang, Z., Yu, G., Liu, Y., Zhang, M., Lin, L., Tang, W., Zhou, Z.: In situ polymerization on nanoscale metal–organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials 218, 119365 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Xia, J., Xue, Y., Lei, B., Xu, L., Sun, M., Li, N., Zhao, H., Wang, M., Luo, M., Zhang, C.: Multi-modal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. Natl. Sci. Rev. 8(7), nwaa221 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  204. Liu, M., Wang, L., Zheng, X., Liu, S., Xie, Z.: Hypoxia-triggered nanoscale metal–organic frameworks for enhanced anticancer activity. ACS Appl. Mater. Interfaces 10(29), 24638–24647 (2018)

    Article  CAS  PubMed  Google Scholar 

  205. He, M., Chen, Y., Tao, C., Tian, Q., An, L., Lin, J., Tian, Q., Yang, H., Yang, S.: Mn–porphyrin-based metal–organic framework with high longitudinal relaxivity for magnetic resonance imaging guidance and oxygen self-supplementing photodynamic therapy. ACS Appl. Mater. Interfaces 11(45), 41946–41956 (2019)

    Article  CAS  PubMed  Google Scholar 

  206. Wan, S.-S., Cheng, Q., Zeng, X., Zhang, X.-Z.: A Mn (III)-sealed metal–organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano 13(6), 6561–6571 (2019)

    Article  CAS  PubMed  Google Scholar 

  207. Meng, H.-M., Hu, X.-X., Kong, G.-Z., Yang, C., Fu, T., Li, Z.-H., Zhang, X.-B.: Aptamer-functionalized nanoscale metal–organic frameworks for targeted photodynamic therapy. Theranostics 8(16), 4332 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, S.-Y., Cheng, H., Qiu, W.-X., Zhang, L., Wan, S.-S., Zeng, J.-Y., Zhang, X.-Z.: Cancer cell membrane-coated biomimetic platform for tumor targeted photodynamic therapy and hypoxia-amplified bioreductive therapy. Biomaterials 142, 149–161 (2017)

    Article  CAS  PubMed  Google Scholar 

  209. Gao, Z., Li, Y., Zhang, Y., An, P., Chen, F., Chen, J., You, C., Wang, Z., Sun, B.: A CD44-targeted Cu (ii) delivery 2D nanoplatform for sensitized disulfiram chemotherapy to triple-negative breast cancer. Nanoscale 12(15), 8139–8146 (2020)

    Article  CAS  PubMed  Google Scholar 

  210. Hang, L., Zhang, T., Wen, H., Liang, L., Li, W., Ma, X., Jiang, G.: Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal–organic frameworks for photodynamic therapy. Nano Res. 14, 660–666 (2021)

    Article  ADS  CAS  Google Scholar 

  211. Zhang, W., Lu, J., Gao, X., Li, P., Zhang, W., Ma, Y., Wang, H., Tang, B.: Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with cuii as the active center. Angew. Chem. 130(18), 4985–4990 (2018)

    Article  ADS  Google Scholar 

  212. Shao, Y., Liu, B., Di, Z., Zhang, G., Sun, L.-D., Li, L., Yan, C.-H.: Engineering of upconverted metal–organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 142(8), 3939–3946 (2020)

    Article  CAS  PubMed  Google Scholar 

  213. Han, D., Han, Y., Li, J., Liu, X., Yeung, K.W.K., Zheng, Y., Cui, Z., Yang, X., Liang, Y., Li, Z.: Enhanced photocatalytic activity and photothermal effects of cu-doped metal–organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B: Environ. 261, 118248 (2020)

    Article  CAS  Google Scholar 

  214. Qin, J.-H., Zhang, H., Sun, P., Huang, Y.-D., Shen, Q., Yang, X.-G., Ma, L.-F.: Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Trans. 49(48), 17772–17778 (2020)

    Article  CAS  PubMed  Google Scholar 

  215. Ni, K., Aung, T., Li, S., Fatuzzo, N., Liang, X., Lin, W.: Nanoscale metal–organic framework mediates radical therapy to enhance cancer immunotherapy. Chem 5(7), 1892–1913 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wang, S., Chen, W., Jiang, C., Lu, L.: Nanoscaled porphyrinic metal–organic framework for photodynamic/photothermal therapy of tumor. Electrophoresis 40(16–17), 2204–2210 (2019)

    Article  CAS  PubMed  Google Scholar 

  217. Yin, S.Y., Song, G., Yang, Y., Zhao, Y., Wang, P., Zhu, L.M., Yin, X., Zhang, X.B.: Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@ metal–organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 29(25), 1901417 (2019)

    Article  Google Scholar 

  218. Wang, J., Fan, Y., Tan, Y., Zhao, X., Zhang, Y., Cheng, C., Yang, M.: Porphyrinic metal–organic framework PCN-224 nanoparticles for near-infrared-induced attenuation of aggregation and neurotoxicity of Alzheimer’s Amyloid-β peptide. ACS Appl. Mater. Interfaces 10(43), 36615–36621 (2018)

    Article  CAS  PubMed  Google Scholar 

  219. Wang, C., Cao, F., Ruan, Y., Jia, X., Zhen, W., Jiang, X.: Specific generation of singlet oxygen through the russell mechanism in hypoxic tumors and GSH depletion by Cu-TCPP nanosheets for cancer therapy. Angew. Chem. Int. Ed. 58(29), 9846–9850 (2019)

    Article  CAS  Google Scholar 

  220. Leng, X., Huang, H., Wang, W., Sai, N., You, L., Yin, X., Ni, J.: Zirconium-Porphyrin PCN-222: pH-responsive Controlled Anticancer Drug Oridonin. Evid.-Based Complement. Alternat. Med. 2018, 3249023 (2018)

  221. Lin, W., Gong, J., Fang, L., Jiang, K.: A photodynamic system based on endogenous bioluminescence for in vitro anticancer studies. Z. Anorga. Allg. Chem. 645(18–19), 1161–1164 (2019)

    Article  CAS  Google Scholar 

  222. Wang, Z., Liu, B., Sun, Q., Dong, S., Kuang, Y., Dong, Y., He, F., Gai, S., Yang, P.: Fusiform-like copper (II)-based metal–organic framework through relief hypoxia and GSH-depletion co-enhanced starvation and chemodynamic synergetic cancer therapy. ACS Appl. Mater. Interfaces 12(15), 17254–17267 (2020)

    Article  CAS  PubMed  Google Scholar 

  223. Ning, W., Di, Z., Yu, Y., Zeng, P., Di, C., Chen, D., Kong, X., Nie, G., Zhao, Y., Li, L.: Imparting designer biorecognition functionality to metal–organic frameworks by a DNA-mediated surface engineering strategy. Small 14(11), 1703812 (2018)

    Article  Google Scholar 

  224. Zheng, X., Wang, L., Guan, Y., Pei, Q., Jiang, J., Xie, Z.: Integration of metal–organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials 235, 119792 (2020)

    Article  CAS  PubMed  Google Scholar 

  225. Schlachter, A., Asselin, P., Harvey, P.D.: Porphyrin-containing MOFs and COFs as heterogeneous photosensitizers for singlet oxygen-based antimicrobial nanodevices. ACS Appl. Mater. Interfaces 13(23), 26651–26672 (2021)

    Article  CAS  PubMed  Google Scholar 

  226. Bi, C., Zhang, C., Ma, F., Zhu, L., Zhu, R., Qi, Q., Liu, L., Dong, H.: Development of 3D porous Ag+ decorated PCN-222@ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U (VI) from seawater. Sep. Purif. Technol. 281, 119900 (2022)

    Article  CAS  Google Scholar 

  227. Chen, M., Long, Z., Dong, R., Wang, L., Zhang, J., Li, S., Zhao, X., Hou, X., Shao, H., Jiang, X.: Titanium incorporation into Zr-porphyrinic metal–organic frameworks with enhanced antibacterial activity against multidrug-resistant pathogens. Small 16(7), 1906240 (2020)

    Article  CAS  Google Scholar 

  228. Xu, Q., Zhan, G., Zhang, Z., Yong, T., Yang, X., Gan, L.: Manganese porphyrin-based metal–organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 11(4), 1937 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wang, S., Chen, Y., Wang, S., Li, P., Mirkin, C.A., Farha, O.K.: DNA-functionalized metal–organic framework nanoparticles for intracellular delivery of proteins. J. Am. Chem. Soc. 141(6), 2215–2219 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Cheng, Q., Yu, W., Ye, J., Liu, M., Liu, W., Zhang, C., Zhang, C., Feng, J., Zhang, X.-Z.: Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 224, 119500 (2019)

    Article  CAS  PubMed  Google Scholar 

  231. Wang, H., Yu, D., Fang, J., Cao, C., Liu, Z., Ren, J., Qu, X.: Renal-clearable porphyrinic metal–organic framework nanodots for enhanced photodynamic therapy. ACS Nano 13(8), 9206–9217 (2019)

    Article  CAS  PubMed  Google Scholar 

  232. Abdelhamid, H.N., Mathew, A.P.: Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted applications: a review. Coord. Chem. Rev. 451, 214263 (2022)

    Article  CAS  Google Scholar 

  233. Chen, L.-J., Liu, Y.-Y., Zhao, X., Yan, X.-P.: Vancomycin-functionalized porphyrinic metal–organic framework PCN-224 with enhanced antibacterial activity against Staphylococcus aureus. Chem. Asian J. 16(15), 2022–2026 (2021)

    Article  CAS  PubMed  Google Scholar 

  234. Luo, Y., Li, J., Liu, X., Tan, L., Cui, Z., Feng, X., Yang, X., Liang, Y., Li, Z., Zhu, S.: Dual metal–organic framework heterointerface. ACS Cent. Sci. 5(9), 1591–1601 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Luo, Y., Liu, X., Tan, L., Li, Z., Yeung, K.W.K., Zheng, Y., Cui, Z., Liang, Y., Zhu, S., Li, C.: Enhanced photocatalytic and photothermal properties of ecofriendly metal–organic framework heterojunction for rapid sterilization. Chem. Eng. J. 405, 126730 (2021)

    Article  CAS  Google Scholar 

  236. Liu, Y.-Y., Chen, L.-J., Zhao, X., Yan, X.-P.: Effect of topology on photodynamic sterilization of porphyrinic metal–organic frameworks. Chem. Eur. J. 27(39), 10151–10159 (2021)

    Article  CAS  PubMed  Google Scholar 

  237. Han, D., Li, Y., Liu, X., Yeung, K.W.K., Zheng, Y., Cui, Z., Liang, Y., Li, Z., Zhu, S., Wang, X.: Photothermy-strengthened photocatalytic activity of polydopamine-modified metal–organic frameworks for rapid therapy of bacteria-infected wounds. J. Mater. Sci. Technol. 62, 83–95 (2021)

    Article  CAS  Google Scholar 

  238. Yu, Y., Cheng, Y., Tan, L., Liu, X., Li, Z., Zheng, Y., Wu, T., Liang, Y., Cui, Z., Zhu, S.: Theory-screened MOF-based single-atom catalysts for facile and effective therapy of biofilm-induced periodontitis. Chem. Eng. J. 431, 133279 (2021)

    Article  Google Scholar 

  239. Zhang, L., Cheng, Q., Li, C., Zeng, X., Zhang, X.-Z.: Near infrared light-triggered metal ion and photodynamic therapy based on AgNPs/porphyrinic MOFs for tumors and pathogens elimination. Biomaterials 248, 120029 (2020)

    Article  CAS  PubMed  Google Scholar 

  240. Xu, Q., Liao, X., Hu, W., Liu, W., Wang, C.: Plasmon induced dual excited synergistic effect in Au/metal–organic frameworks composite for enhanced antibacterial therapy. J. Mater. Chem. B 9(46), 9606–9614 (2021)

    Article  CAS  PubMed  Google Scholar 

  241. Tang, J., Ding, G., Niu, J., Zhang, W., Tang, G., Liang, Y., Fan, C., Dong, H., Yang, J., Li, J.: Preparation and characterization of tebuconazole metal–organic framework-based microcapsules with dual-microbicidal activity. Chem. Eng. J. 359, 225–232 (2019)

    Article  CAS  Google Scholar 

  242. Min, T., Sun, X., Zhou, L., Du, H., Zhu, Z., Wen, Y.: Electrospun pullulan/PVA nanofibers integrated with thymol-loaded porphyrin metal− organic framework for antibacterial food packaging. Carbohydr. Polym. 270, 118391 (2021)

    Article  CAS  PubMed  Google Scholar 

  243. Zhang, L., Ouyang, M., Zhang, Y., Zhang, L., Huang, Z., He, L., Lei, Y., Zou, Z., Feng, F., Yang, R.: The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods. J. Mater. Chem. B 9(38), 8048–8055 (2021)

    Article  CAS  PubMed  Google Scholar 

  244. Wang, Z., Zhu, J., Xu, S., Zhang, Y., Van der Bruggen, B.: Graphene-like MOF nanosheets stabilize graphene oxide membranes enabling selective molecular sieving. J. Membr. Sci. 633, 119397 (2021)

    Article  CAS  Google Scholar 

  245. Zhang, H., Xu, Z., Mao, Y., Zhang, Y., Li, Y., Lao, J., Wang, L.: Integrating porphyrinic metal–organic frameworks in nanofibrous carrier for photodynamic antimicrobial application. Polymers 13(22), 3942 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Nie, X., Wu, S., Hussain, T., Wei, Q.: PCN-224 nanoparticle/polyacrylonitrile nanofiber membrane for light-driven bacterial inactivation. Nanomaterials 11(12), 3162 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Tang, J., Tang, G., Niu, J., Yang, J., Zhou, Z., Gao, Y., Chen, X., Tian, Y., Li, Y., Li, J.: Preparation of a porphyrin metal–organic framework with desirable photodynamic antimicrobial activity for sustainable plant disease management. J. Agric. Food Chem. 69(8), 2382–2391 (2021)

    Article  CAS  PubMed  Google Scholar 

  248. Ximing, G., Bin, G., Yuanlin, W., Shuanghong, G.: Preparation of spherical metal–organic frameworks encapsulating Ag nanoparticles and study on its antibacterial activity. Mater. Sci. Eng. C 80, 698–707 (2017)

    Article  Google Scholar 

  249. Mao, K., Zhu, Y., Rong, J., Qiu, F., Chen, H., Xu, J., Yang, D., Zhang, T., Zhong, L.: Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: synergistic effect for significantly enhancing photoactivation capacity. Colloids Surf. A Physicochem. Eng. Asp. 611, 125888 (2021)

    Article  CAS  Google Scholar 

  250. Deng, Q., Sun, P., Zhang, L., Liu, Z., Wang, H., Ren, J., Qu, X.: Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Adv. Funct. Mater. 29(30), 1903018 (2019)

    Article  Google Scholar 

  251. Lan, G., Ni, K., Xu, R., Lu, K., Lin, Z., Chan, C., Lin, W.: Nanoscale metal–organic layers for deeply penetrating X-ray-induced photodynamic therapy. Angew. Chem. 129(40), 12270–12274 (2017)

    Article  ADS  Google Scholar 

  252. Teo, W.L., Liu, J., Zhou, W., Zhao, Y.: Facile preparation of antibacterial MOF-fabric systems for functional protective wearables. SmartMat 2(4), 567–578 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Cambridge Crystallographic Data Centre for access to the CSD Enterprise. We also acknowledge the support from Ferdowsi University of Mashhad (FUM) and Mashhad University of Medical Science.

Funding

This work was supported by Ferdowsi University of Mashhad, Grant Number: 54238.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Amir Sh. Saljooghi or Mona Alibolandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanzadeh Goji, N., Ramezani, M., Sh. Saljooghi, A. et al. Porphyrin-based metal–organic frameworks: focus on diagnostic and therapeutic applications. J Nanostruct Chem 14, 167–208 (2024). https://doi.org/10.1007/s40097-022-00500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00500-6

Keywords

Navigation