Skip to main content
Log in

Synthesis of doxorubicin pro-drug nanoparticles based on poloxamer188 and studies on their in vivo bio-security and in vitro anti-tumor activities

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop a novel glutathione (GSH)-responsible doxorubicin (DOX) pro-drug (poloxamer188-S-S-DOX, PSSD) nanoparticles and study on their in vitro anti-tumor activity. The PSSD pro-drug was synthesized by conjugating DOX molecules onto poloxamer188 chains with disulfide bonds as linkers. The PSSD nanoparticles (NPs) were fabricated by a solvent-evaporation method, and the in vitro anti-4T1 cell activity and in vivo bio-security of PSSD NPs were investigated. The proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR) spectra confirmed the synthesis of PSSD pro-drug. The results from transmission electron microscopy (TEM) and nano-ZS90 dynamic light scattering (DLS) showed that these mono-dispersed PSSD NPs were round-shaped with a diameter of 117.4 ± 0.8 nm. Bio-security studies found that the PSSD NPs did not induce obvious toxicity toward administrated Kunming mice. Furthermore, the PSSD NPs could be taken in by 4T1cells. In tumor cells, the disulfide bonds cleaved by the reducing action of GSH and the conjugated DOX were released. Therefore, the PSSD pro-drug improved the in vitro anti-tumor activity of free DOX molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The relevant data supporting this study’s findings are available on reasonable request from the corresponding authors.

References

  1. Nishan U, Khan HU, Rahim A, Asad M, Qayum M, Khan N, Shah M, Muhammad N (2022) Non-enzymatic colorimetric sensing of nitrite in fortified meat using functionalized drug mediated manganese dioxide. Mater Chem Phys 278:125729

    Article  CAS  Google Scholar 

  2. Almeida H, Amaral MH, LoblO P, Lobo JS (2013) Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Del 10:1223–1237

    Article  CAS  Google Scholar 

  3. Albert A (1958) Chemical aspects of selective toxicity. Nature 182:421–423

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bhosle D, Bharambe S, Gairola N, Dhaneshwar S (2006) Mutual prodrug concept: Fundamentals and applications. India J Pharm Sci 68:286

    Article  CAS  Google Scholar 

  5. Yi X, Zeng W, Wang C, Chen Y, Zheng L, Zhu X, Ke Y, He X, Kuang Y, Huang Q (2022) A step-by-step multiple stimuli-responsive metal-phenolic network prodrug nanoparticles for chemotherapy. Nano Res 15:1205–1212

    Article  ADS  CAS  Google Scholar 

  6. Luo Q, Lin L, Huang Q, Duan Z, Gu L, Zhang H, Gu Z, Gong Q, Luo K (2022) Dual stimuli-responsive dendronized prodrug derived from poly(oligo-(ethylene glycol) methacrylate)-based copolymers for enhanced anti-cancer therapeutic effect. Acta Biomater 143:320–332

    Article  CAS  PubMed  Google Scholar 

  7. Lipka E, Chadderdon AM, Harteg CC, Doherty MK, Simon ES, Domagala JM, Reyna DM, Hutchings KM, Gan X, White AD (2022) NPP-669, a novel broad-spectrum antiviral therapeutic with excellent cellular uptake, antiviral potency, oral bioavailability, preclinical efficacy, and a promising safety margin. Mol Pharm 20:370–382

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hou DY, Wang MD, Zhang NY, Xu SX, Wang ZJ, Hu XJ, Lv GT, Wang JQ, Lv MY, Yi L, Wang L, Cheng DB, Sun T, Wang H, Xu W (2022) A lysosome-targeting self-condensation prodrug-nanoplatform system for addressing drug resistance of cancer. Nano Lett 22:3983–3992

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Dong X, Brahma RK, Fang C, Yao SQ (2022) Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 13:4239–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang Z (2022) Progress of monodispersed nano-hydroxyapatite-based biological tracing. NANO 17:2230005

    Article  CAS  Google Scholar 

  11. Fuzlin AF, Mazuki NF, Khan NM, Saadiah MA, Hasan MM, Nagao Y, Samsudin AS (2022) Studies on the ions transportation behavior of alginate doped with H+ carrier-based polymer electrolytes. Mater Chem Phys 2022:126207

    Article  Google Scholar 

  12. Song ES, Sang SH, Kang JT, Cha P, Park K (2022) Novel corneal endothelial cell carrier couples a biodegradable polymer and a mesenchymal stem cell-derived extracellular matrix. ACS Appl Mater Interfaces 14:12116–12129

    Article  CAS  PubMed  Google Scholar 

  13. Wei BX, Guo X, Cui YT, Ma SC, Li W, Bai YP (2022) Polyether fluorinated amphiphilic diblock polymer: preparation, characterization and application as drug delivery agent. Eur Polym J 162:110872

    Article  CAS  Google Scholar 

  14. Levit SL, Gade NR, Roper TD, Yang H, Tang C (2020) Self-assembly of pH-labile polymer nanoparticles for paclitaxel prodrug delivery: Formulation, characterization, and evaluation. Int J Mol Sci 21:9292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Hu D, Lu Y, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L (2022) Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B 12:2710–2730

    Article  CAS  PubMed  Google Scholar 

  16. Soroushnia A, Ganji F, Vasheghani-Farahani E, Mobedi H (2022) Effect of combined stabilizers on midazolam nanosuspension properties. Iran Polym J 31:215–222

    Article  CAS  Google Scholar 

  17. Shi Y, Hou X, Yu S, Pan X, Yang M, Hu J, Wang X (2022) Targeted delivery of doxorubicin into tumor cells to decrease the in vivo toxicity of glutathione-sensitive prodrug-poloxamer188-b-polycaprolactone nanoparticles and improve their anti-tumor activities. Colloid Surf B 220:112874

    Article  CAS  Google Scholar 

  18. Mcgoldrick CA, Jiang YL, Paromov V, Brannon M, Krishnan K, Stone WL (2014) Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer. BMC Cancer 14:1–14

    Article  CAS  Google Scholar 

  19. Gadhave D, Gupta A, Khot S, Tagalpallewar A, Kokare C (2023) Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: formulation, optimization and pharmacological studies in rats. Ann Pharm Fr 81:315–333

    Article  CAS  PubMed  Google Scholar 

  20. Argenta DF, Bernardo B, Chamorro AF, Matos PR, Caon T (2021) Thermosensitive hydrogels for vaginal delivery of secnidazole as an approach to overcome the systemic side-effects of oral preparations. Eur J Pharm Sci 159:105722

    Article  CAS  PubMed  Google Scholar 

  21. He J, Hou S, Lu W, Zhu L, Feng J (2007) Preparation, pharmacokinetics and body distribution of silymarin-loaded solid lipid nanoparticles after oral administration. J Biomed Nanotechnol 3:195–202

    Article  CAS  Google Scholar 

  22. O’Grady S, Crown J, Duffy MJ (2022) Statins inhibit proliferation and induce apoptosis in triple-negative breast cancer cells. Med Oncol 39:1–11

    Google Scholar 

  23. Wang Q, Wang C, Li S, Xiong Y, Wang H, Li Z, Wan J, Yang X, Li Z (2022) Influence of linkers withinstimuli-responsive prodrugs on cancer therapy: a case of five doxorubicin dimer-based nanoparticles. Chem Mater 34:2085–2097

    Article  CAS  Google Scholar 

  24. Han J, Yang W, Li Y, Li J, Jiang F, Xie J, Huang X (2022) Combining doxorubicin-conjugated polymeric nanoparticles and 5-aminolevulinic acid for enhancing radiotherapy against lung cancer. Bioconjug Chem 33:654–665

    Article  CAS  PubMed  Google Scholar 

  25. Stella VJ, Nti-Addae KW (2007) Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 59:677–794

    Article  CAS  PubMed  Google Scholar 

  26. Swarnakar NK, Thanki K, Jain S (2013) Effect of co-administration of CoQ10-loaded nanoparticles on the efficacy and cardiotoxicity of doxorubicin-loaded nanoparticles. RSC Adv 3:14671–14685

    Article  ADS  CAS  Google Scholar 

  27. Tingting L, Nuannuan L, Jing Z, Yi L, Rong R, Yuanlei F (2021) Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin invivo and invitro. Drug Deliv 28:1272–1280

    Article  Google Scholar 

  28. Steffi T, Kannan K, Linta J, Patel V, Ghosh A, Sathish CI, Weidenhofer J, Yang JH, Verrills NM, Karakoti A, Vinu A (2022) Egg-yolk core–shell mesoporous silica nanoparticles for high doxorubicin loading and delivery to prostate cancer cells. Nanoscale 18:14

    Google Scholar 

  29. Zhang L, Zhuang W, Yuan Y (2022) Novel glutathione activated smart probe for photoacoustic imaging, photothermal therapy, and safe postsurgery treatment. ACS Appl Mater Interfaces 14:24174–24186

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Zhang T, Ma X, Wang Y, Lu Y, Jia D, Huang X, Chen J, Xu Z, Wena F (2020) The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharm Sci 15:79–90

    CAS  Google Scholar 

  31. Zhong M, Sun Y, Song H, Liao Y, Qi B, Li Y (2023) Dithiothreitol-induced reassembly of soybean lipophilic protein as a carrier for resveratrol: preparation, structural characterization, and functional properties. Food Chem 399:133964

    Article  CAS  PubMed  Google Scholar 

  32. Yuan F, Nelson RK, Tabor DE, Zhang Y, Wang D (2014) Dexamethasone prodrug treatment prevents nephritis in lupus-prone (NZB × NZW)F1 mice without causing systemic side effects. Arthritis Rheumatol 64:4029–4039

    Article  Google Scholar 

  33. Zhan C, Lin G, Huang Y, Wang Z, Wu S (2021) A dopamine-precursor-based nanoprodrug for in-situ drug release and treatment of acute liver failure by inhibiting NLRP3 inflammasome and facilitating liver regeneration. Biomaterials 268:120573

    Article  CAS  PubMed  Google Scholar 

  34. Cao M, Jin H, Ye W, Liu P, Wang L, Jiang H (2011) A convenient scheme for synthesizing reduction-sensitive chitosan-based amphiphilic copolymers for drug delivery. J Appl Polym Sci 123:3137–3144

    Google Scholar 

  35. Jf A, Be B, Spja B (2005) Quantification of aldehyde impurities in poloxamer by 1H NMR spectrometry. Anal Chim Acta 552:160–165

    Article  Google Scholar 

  36. David G, Turin-Moleavin I, Ursu LE, Peptanariu D, Ailincai D (2018) Multilayer biopolymer/poly(ε-caprolactone)/polycation nanoparticles. Iran Polym J 27:517–526

    Article  CAS  Google Scholar 

  37. Moradi G, Zinadini S (2020) A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. Iran Polym J 29:827–840

    Article  CAS  Google Scholar 

  38. Cy A, Bw A, Zl A, Miao G, Xia Q, Li Z, Janik MJ, Li G, Xiao J (2021) Catalytic adsorptive desulfurization of mercaptan, sulfide and disulfide using bifunctional Ti-based adsorbent for ultra-clean oil. Chin J Chem Eng 42:25–34

    Google Scholar 

  39. Carai MAM, Vacca G, Serra S, Colombo G, Froestl W, Gessa GL (2004) Suppression of GABA (B) receptor function in vivo by disulfide reducing agent, DL-dithiothreitol (DTT). Psychopharmacology 174:283–290

    Article  CAS  PubMed  Google Scholar 

  40. Hou X, Shi Y, Yang M, Fan X, Liang J, Pan X, Wang X (2021) Fabrication of poly(t-butyl betaine carboxylate)-based nanoparticles and study on theirin vivobiosecurity. J Biomater Sci Polym E 32:2387–2401

    Article  CAS  Google Scholar 

  41. Kostadinova A, Seifert B, Albrecht W, Malsch G, Groth T, Lendlein A, Altankov G (2009) Novel polymer blends for the preparation of membranes for biohybrid liver systems. J Biomater Sci Polym Ed 20:821–839

    Article  CAS  PubMed  Google Scholar 

  42. Prado-Audelo MLD, Caballero-Florán IH, Mendoza-Muñoz N, Giraldo-Gomez D, Sharifi-Rad J, Patra JK, González-Torres M, Florán B, Cortes H, Leyva-Gómez G (2022) Current progress of self-healing polymers for medical applications in tissue engineering. Iran Polym J 31:7–29

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the Scientific & Technological Projects of Henan Province (Grant No. 222102310415) and the Natural Science Foundation of Henan Province (232300420020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongli Shi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1206 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Hou, X., Yu, S.S. et al. Synthesis of doxorubicin pro-drug nanoparticles based on poloxamer188 and studies on their in vivo bio-security and in vitro anti-tumor activities. Iran Polym J 33, 481–492 (2024). https://doi.org/10.1007/s13726-023-01267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01267-5

Keywords

Navigation