Skip to main content
Log in

Optical Properties and Surface Morphologies of Silica–Gold Nanoshells Depending on Buffer Solutions and Reducing Agents

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Silica–gold nanoshells (SGNSs) were prepared at different concentrations of reducible gold salts (K+AuCl4) with a toxic formaldehyde (FAH) reducing agent. FAH-induced SGNSs (F-SGNSs) showed not only a distinct red-shift of the plasmon resonance peak but also an increase in the thickness of the gold shell in proportion to the concentration of gold salts (0.38–1.90 mM). However, the excessive addition of reducible gold salts resulted in agglomeration of the SGNSs. The F-SGNSs showed enhanced colloidal stability after the addition of buffer solutions containing different oxyanions in the following order: K2CO3 > citrate > citrate + PBS > PBS. In addition, biocompatible ascorbic acid (ASA) was used to avoid the problem of toxic FAH agents for in vivo applications. The ASA-induced SGNSs showed a smoother surface morphology and more red-shift of the surface plasmon resonance band in comparison to F-SGNSs, probably because of the coalescence of small gold clusters formed under the mild reducing power of ASA. The surface morphologies of the SGNSs and their optical properties were characterized by transmission electron microscopy, scanning electron microscopy, zeta-potential measurement, and UV–visible spectroscopy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photonics 1(11), 641–648 (2007). https://doi.org/10.1038/nphoton.2007.223

    Article  CAS  Google Scholar 

  2. Petryayeva, E., Krull, U.J.: Localized surface plasmon resonance: nanostructures, bioassays and biosensing–a review. Anal. Chim. Acta 706(1), 8–24 (2011). https://doi.org/10.1016/j.aca.2011.08.020

    Article  CAS  Google Scholar 

  3. Alharbi, R., Irannejad, M., Yavuz, M.: A short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance. Sensors (Basel) (2019). https://doi.org/10.3390/s19040862

    Article  Google Scholar 

  4. Zhang, C., Zhang, T., Zhang, Z., Zheng, H.: Plasmon enhanced fluorescence and Raman scattering by [Au-Ag Alloy NP Cluster]@SiO2 core-shell nanostructure. Front. Chem. 7, 647 (2019). https://doi.org/10.3389/fchem.2019.00647

    Article  CAS  Google Scholar 

  5. Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288(2–4), 243–247 (1998). https://doi.org/10.1016/s0009-2614(98)00277-2

    Article  CAS  Google Scholar 

  6. Jackson, J.B., Halas, N.J.: Silver nanoshells: variations in morphologies and optical properties. J. Phys. Chem. B 105(14), 2743–2746 (2001). https://doi.org/10.1021/jp003868k

    Article  CAS  Google Scholar 

  7. Park, S.-E., Park, M.-Y., Han, P.-K., Lee, S.-W.: The effect of pH-adjusted gold colloids on the formation of gold clusters over APTMS-coated silica cores. Bull. Korean Chem. Soc. 27(9), 1341–1345 (2006). https://doi.org/10.5012/bkcs.2006.27.9.1341

    Article  CAS  Google Scholar 

  8. Wang, Y.C., Rheaume, E., Lesage, F., Kakkar, A.: Synthetic methodologies to gold nanoshells: an overview. Molecules (2018). https://doi.org/10.3390/molecules23112851

    Article  Google Scholar 

  9. Oldenburg, S.J., Westcott, S.L., Averitt, R.D., Halas, N.J.: Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys. 111(10), 4729–4735 (1999). https://doi.org/10.1063/1.479235

    Article  CAS  Google Scholar 

  10. Sanchez-Gaytan, B.L., Qian, Z., Hastings, S.P., Reca, M.L., Fakhraai, Z., Park, S.-J.: Controlling the topography and surface plasmon resonance of gold nanoshells by a templated surfactant-assisted seed growth method. J. Phys. Chem. C 117(17), 8916–8923 (2013). https://doi.org/10.1021/jp401189k

    Article  CAS  Google Scholar 

  11. Bui, V.K.H., Park, D., Lee, Y.C.: Chitosan combined with ZnO, TiO(2) and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers (Basel) (2017). https://doi.org/10.3390/polym9010021

    Article  Google Scholar 

  12. Naim, N.M., Abdullah, H., Hamid, A.A.: Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection. Electron. Mater. Lett. 15(1), 70–79 (2018). https://doi.org/10.1007/s13391-018-0087-1

    Article  CAS  Google Scholar 

  13. Vishnoi, R., Gupta, S., Sharma, G.D., Singhal, R.: Large tuning of surface plasmon resonance of Au–fullerene nanocomposite. Electron. Mater. Lett. 15(1), 111–118 (2018). https://doi.org/10.1007/s13391-018-0099-x

    Article  CAS  Google Scholar 

  14. Phung, V.D., Jung, W.S., Nguyen, T.A., Kim, J.H., Lee, S.W.: Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. Nanoscale 10(47), 22493–22503 (2018). https://doi.org/10.1039/c8nr06444j

    Article  CAS  Google Scholar 

  15. Ta, Q.T.H., Namgung, G., Noh, J.-S.: Synthesis of Ag@rGO/g-C3N4 layered structures and their application to toxic gas sensors: effect of Ag nanoparticles. Electron. Mater. Lett. 15(6), 750–759 (2019). https://doi.org/10.1007/s13391-019-00175-2

    Article  CAS  Google Scholar 

  16. Li, Y., Gao, S., Zhang, B., Mao, H., Tang, X.: Electrospun Ag-doped SnO2 hollow nanofibers with high antibacterial activity. Electron. Mater. Lett. 16(3), 195–206 (2020). https://doi.org/10.1007/s13391-020-00203-6

    Article  CAS  Google Scholar 

  17. Jung, W.S., Park, S.H., Kadam, A.N., Kim, H., Lee, S.W.: Direct hydrothermal synthesis of amine-functionalized cubic hematite (C-Fe2O3) and sonochemical deposition of nanosized Au for its application as a visible-light photocatalyst. Dalton Trans. 49(9), 2924–2932 (2020). https://doi.org/10.1039/c9dt04611a

    Article  CAS  Google Scholar 

  18. Kim, M.S., Kim, D.H., Lee, J., Ahn, H.T., Kim, M.I., Lee, J.: Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. Nanoscale 12(3), 1419–1424 (2020). https://doi.org/10.1039/c9nr09182c

    Article  CAS  Google Scholar 

  19. Tran, V.A., Nguyen, T.P., Le, V.T., Kim, I.T., Lee, S.-W., Nguyen, C.T.: Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation. J. Sci. Adv. Mater. Devices 6(1), 108–117 (2021). https://doi.org/10.1016/j.jsamd.2020.12.001

    Article  CAS  Google Scholar 

  20. Loo, C., Lin, A., Hirsch, L., Lee, M.H., Barton, J., Halas, N., West, J., Drezek, R.: Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3(1), 33–40 (2004). https://doi.org/10.1177/153303460400300104

    Article  CAS  Google Scholar 

  21. Park, S.E., Lee, J., Lee, T., Bae, S.B., Kang, B., Huh, Y.M., Lee, S.W., Haam, S.: Comparative hyperthermia effects of silica-gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells. Int J Nanomed 10(Spec Iss), 261–271 (2015). https://doi.org/10.2147/IJN.S88309

    Article  CAS  Google Scholar 

  22. Ng, V.W.K., Berti, R., Lesage, F., Kakkar, A.: Gold: a versatile tool for in vivo imaging. J Mater Chem B 1(1), 9–25 (2013). https://doi.org/10.1039/c2tb00020b

    Article  CAS  Google Scholar 

  23. Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J., West, J.L.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003). https://doi.org/10.1073/pnas.2232479100

    Article  CAS  Google Scholar 

  24. Lee, J., Yang, J., Ko, H., Oh, S., Kang, J., Son, J., Lee, K., Lee, S.W., Yoon, H.G., Suh, J.S.: Multifunctional magnetic gold nanocomposites: human epithelial cancer detection via magnetic resonance imaging and localized synchronous therapy. Adv. Funct. Mater. 18(2), 258–264 (2008)

    Article  CAS  Google Scholar 

  25. Rastinehad, A.R., Anastos, H., Wajswol, E., Winoker, J.S., Sfakianos, J.P., Doppalapudi, S.K., Carrick, M.R., Knauer, C.J., Taouli, B., Lewis, S.C., Tewari, A.K., Schwartz, J.A., Canfield, S.E., George, A.K., West, J.L., Halas, N.J.: Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl. Acad. Sci. U.S.A. 116(37), 18590–18596 (2019). https://doi.org/10.1073/pnas.1906929116

    Article  CAS  Google Scholar 

  26. Shi, W., Sahoo, Y., Swihart, M.T., Prasad, P.N.: Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21(4), 1610–1617 (2005). https://doi.org/10.1021/la047628y

    Article  CAS  Google Scholar 

  27. Park, S., Park, M., Han, P., Lee, S.: Relative contributions of experimental parameters to NIR-absorption spectra of gold nanoshells. J. Ind. Eng. Chem. 13(1), 65–70 (2007)

    CAS  Google Scholar 

  28. Halas, N.: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells. MRS Bull. 30(5), 362–367 (2011). https://doi.org/10.1557/mrs2005.99

    Article  Google Scholar 

  29. Xu, X.R., Li, H.B., Li, X.Y., Gu, J.D.: Reduction of hexavalent chromium by ascorbic acid in aqueous solutions. Chemosphere 57(7), 609–613 (2004). https://doi.org/10.1016/j.chemosphere.2004.07.031

    Article  CAS  Google Scholar 

  30. Duff, D.G., Baiker, A., Edwards, P.P.: A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9(9), 2301–2309 (1993). https://doi.org/10.1021/la00033a010

    Article  CAS  Google Scholar 

  31. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26(1), 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  32. Pham, T., Jackson, J.B., Halas, N.J., Lee, T.R.: Preparation and characterization of gold nanoshells coated with self-assembled monolayers. Langmuir 18(12), 4915–4920 (2002). https://doi.org/10.1021/la015561y

    Article  CAS  Google Scholar 

  33. Lim, Y.T., Park, O.O., Jung, H.-T.: Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials. J. Colloid Interface Sci. 263(2), 449–453 (2003). https://doi.org/10.1016/s0021-9797(03)00322-9

    Article  CAS  Google Scholar 

  34. Turkevich, J., Stevenson, P.C., Hillier, J.: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951). https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  35. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973). https://doi.org/10.1038/physci241020a0

    Article  CAS  Google Scholar 

  36. Bajaj, M., Wangoo, N., Jain, D.V.S., Sharma, R.K.: Quantification of adsorbed and dangling citrate ions on gold nanoparticle surface using thermogravimetric analysis. Sci. Rep. 10(1), 8213 (2020). https://doi.org/10.1038/s41598-020-65013-0

    Article  CAS  Google Scholar 

  37. Monti, S., Barcaro, G., Sementa, L., Carravetta, V., Ågren, H.: Characterization of the adsorption dynamics of trisodium citrate on gold in water solution. RSC Adv. 7(78), 49655–49663 (2017). https://doi.org/10.1039/c7ra10759e

    Article  CAS  Google Scholar 

  38. Floate, S., Hosseini, M., Arshadi, M.R., Ritson, D., Young, K.L., Nichols, R.J.: An in-situ infrared spectroscopic study of the adsorption of citrate on Au(111) electrodes. J. Electroanal. Chem. 542, 67–74 (2003). https://doi.org/10.1016/s0022-0728(02)01451-1

    Article  CAS  Google Scholar 

  39. Arihara, K., Kitamura, F., Ohsaka, T., Tokuda, K.: Characterization of the adsorption state of carbonate ions at the Au(111) electrode surface using in situ IRAS. J. Electroanal. Chem. 510(1–2), 128–135 (2001). https://doi.org/10.1016/s0022-0728(01)00498-3

    Article  CAS  Google Scholar 

  40. Cuesta, A., Kleinert, M., Kolb, D.M.: The adsorption of sulfate and phosphate on Au(111) and Au(100) electrodes: an in situ STM study. Phys. Chem. Chem. Phys. 2(24), 5684–5690 (2000). https://doi.org/10.1039/b006464p

    Article  CAS  Google Scholar 

  41. Shanmugam, K., Maczurek, A.E., Steele, M., Benavente-García, O., Castillo, J., Münch, G.: Novel neuroprotective therapies for Alzheimer’s and Parkinsons’s disease. Front. Med. Chem. 5, 15–57 (2010)

    CAS  Google Scholar 

  42. Shopa, M., Kolwas, K., Derkachova, A., Derkachov, G.: Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere. Opto-Electron. Rev. (2010). https://doi.org/10.2478/s11772-010-0047-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Korea Basic Institute (National Research facilities and Equipment Center) Grant funded by the Ministry of Education (2020R1A6C103A050). This study was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea (20194030202440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wha Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SW., Nguyen, T.T.T., Van The, V. et al. Optical Properties and Surface Morphologies of Silica–Gold Nanoshells Depending on Buffer Solutions and Reducing Agents. Electron. Mater. Lett. 17, 444–450 (2021). https://doi.org/10.1007/s13391-021-00292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00292-x

Keywords

Navigation