Skip to main content
Log in

An Investigation into the Applicability of Pyrolyzed Tyre Char and Tyre Crumb for the Recovery of Gold from Acidic Solutions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study has assessed the performance of pyrolytic tyre char and tyre crumb as cheap adsorbents for gold recovery from acidic solutions. The performances of the aforementioned cheap adsorbents, prior to and after undertaking demineralisation operations, were also investigated. Demineralisation of the adsorbents was undertaken via the application of 1 M sodium hydroxide and 1M nitric acid at a temperature of 90 °C for a duration of 24 h with changes in BET surface areas (SBETs) and adsorption performances, subsequently evaluated. Initial investigations established that the pH value of 2 constituted the preferred pH at which adsorption was enhanced, thus this pH was maintained while undertaking subsequent kinetic and equilibrium adsorption experiments. Based on the experimental investigations, it was demonstrated that the kinetics and adsorption of gold ions (Au3+) as AuCl4 anions from acidic solutions was best described using pseudo second order kinetic and Langmuir equilibrium isotherm models, respectively. Even though the demineralisation process resulted in a notable increase in BET surface areas (SBETs) for both char (23%) and crumb (984%), it was found to negatively influence adsorbent loading of Au3+ ions onto the adsorbents. It was therefore suggested that sulphur removal via demineralisation may explain the reduced adsorbent loading since there is typically an affinity of gold ions (Au3+) for localised elemental sulphur. This affinity causes sulphur to be oxidised into solution and the gold ions (Au3+) to be reduced to elemental gold on the adsorbent surface. The present study was therefore able to demonstrate the preference for untreated of pyrolytic tyre char and to a lesser extent, untreated crumb, as alternative low-cost adsorbents for gold recovery from acidic solutions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Goodman, P.: Current and future uses of gold in electronics. Gold Bull. 35(1), 21–26 (2002)

    Article  Google Scholar 

  2. Rubcumintara, T.: Adsorptive recovery of Au(III) from aqueous solution using modified bagasse biosorbent. Int. J. Chem. Eng. Appl. 6(2), 95–100 (2015)

    Google Scholar 

  3. Hagelüken, C., Corti, C.W.: Recycling of gold from electronics: cost-effective use through ‘Design for Recycling.’ Gold Bull. 43(3), 209–220 (2010). https://doi.org/10.1007/BF03214988

    Article  Google Scholar 

  4. Lu, Y., Xu, Z.: Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour. Conserv. Recycl. 113, 28–39 (2016). https://doi.org/10.1016/j.resconrec.2016.05.007

    Article  Google Scholar 

  5. Choudhary, B.C., Paul, D., Borse, A.U., Garole, D.J.: Surface functionalized biomass for adsorption and recovery of gold from electronic scrap and refinery wastewater. Sep. Purif. Technol. 195, 260–270 (2018). https://doi.org/10.1016/j.seppur.2017.12.024

    Article  Google Scholar 

  6. Yi, Q., Fan, R., Xie, F., Min, H., Zhang, Q., Luo, Z.: Selective recovery of Au(III) and Pd(II) from waste PCBs using ethylenediamine modified persimmon tannin adsorbent. Procedia Environ. Sci. 31, 185–194 (2016). https://doi.org/10.1016/j.proenv.2016.02.025

    Article  Google Scholar 

  7. Tripathi, A., Kumar, M., Sau, D., Agrawal, A., Chakravarty, S., Mankhand, T.: Leaching of gold from the waste mobile phone printed circuit boards (PCBs) with ammonium thiosulphate. Int. J. Metall. Eng. 1(2), 17–21 (2012)

    Google Scholar 

  8. Abd Razak, N.F., Shamsuddin, M., Lee, S.L.: Adsorption kinetics and thermodynamics studies of gold(III) ions using thioctic acid functionalized silica coated magnetite nanoparticles. Chem. Eng. Res. Des. 130, 18–28 (2018). https://doi.org/10.1016/j.cherd.2017.12.004

    Article  Google Scholar 

  9. Wojnicki, M., Luty-Błocho, M., Socha, R.P., Mech, K., Pędzich, Z., Fitzner, K., Rudnik, E.: Kinetic studies of sorption and reduction of gold(III) chloride complex ions on activated carbon Norit ROX 0.8. J. Ind. Eng. Chem. 29, 289–297 (2015). https://doi.org/10.1016/j.jiec.2015.03.036

    Article  Google Scholar 

  10. Andrade, L.H., Aguiar, A.O., Pires, W.L., Miranda, G.A., Teixeira, L.P.T., Almeida, G.C.C., Amaral, M.C.S.: Nanofiltration and reverse osmosis applied to gold mining effluent treatment and reuse. Braz. J. Chem. Eng. 34, 93–107 (2017)

    Article  Google Scholar 

  11. Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., Ueda, K.: Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 99(9), 3801–3809 (2008). https://doi.org/10.1016/j.biortech.2007.07.008

    Article  Google Scholar 

  12. Nicol, M.J., O’Malley, G.: Recovering gold from thiosulfate leach pulps via ion exchange. JOM. 54(10), 44–46 (2002). https://doi.org/10.1007/BF02709221

    Article  Google Scholar 

  13. Ahlatci, F., Koç, E., Yazici, E., Celep, O., Deveci, H.: (2016) Sulphide precipitation of gold and silver from thiosulphate leach solutions

  14. Zazycki, M.A., Tanabe, E.H., Bertuol, D.A., Dotto, G.L.: Adsorption of valuable metals from leachates of mobile phone wastes using biopolymers and activated carbon. J. Environ. Manag. 188, 18–25 (2017). https://doi.org/10.1016/j.jenvman.2016.11.078

    Article  Google Scholar 

  15. Kow, S.-H., Fahmi, M.R., Abidin, C.Z.A., Ong, S.-A., Ibrahim, N.: Regeneration of spent activated carbon from industrial application by NaOH solution and hot water. Desalin. Water Treat. 57(60), 29137–29142 (2016). https://doi.org/10.1080/19443994.2016.1168133

    Article  Google Scholar 

  16. Brunner, G.: (2014) Chap. 6—Extraction processes. In: Brunner G (ed) Supercritical Fluid Science and Technology, vol. 5, pp. 323–360. Elsevier. https://doi.org/10.1016/B978-0-444-59413-6.00006-6

  17. Ramírez-Muñiz, K., Song, S., Berber-Mendoza, S., Tong, S.: Adsorption of the complex ion Au(CN)2- onto sulfur-impregnated activated carbon in aqueous solutions. J. Colloid Interface Sci. 349(2), 602–606 (2010). https://doi.org/10.1016/j.jcis.2010.05.056

    Article  Google Scholar 

  18. Feng, B., Yao, C., Chen, S., Luo, R., Liu, S., Tong, S.: Highly efficient and selective recovery of Au(III) from a complex system by molybdenum disulfide nanoflakes. Chem. Eng. J. 350, 692–702 (2018). https://doi.org/10.1016/j.cej.2018.05.130

    Article  Google Scholar 

  19. Arrascue, M.L., Garcia, H.M., Horna, O., Guibal, E.: Gold sorption on chitosan derivatives. Hydrometallurgy. 71(1), 191–200 (2003). https://doi.org/10.1016/S0304-386X(03)00156-7

    Article  Google Scholar 

  20. Fırlak, M., Yetimoğlu, E.K., Kahraman, M.V.: Adsorption of Au(III) ions from aqueous solutions by thiol-ene photoclick hydrogels and its application to electronic waste and geothermal water. J. Water Process Eng. 3, 105–116 (2014). https://doi.org/10.1016/j.jwpe.2014.05.016

    Article  Google Scholar 

  21. Troca-Torrado, C., Alexandre-Franco, M., Fernández-González, C., Alfaro-Domínguez, M., Gómez-Serrano, V.: Development of adsorbents from used tire rubber: their use in the adsorption of organic and inorganic solutes in aqueous solution. Fuel Process. Technol. 92(2), 206–212 (2011). https://doi.org/10.1016/j.fuproc.2010.03.007

    Article  Google Scholar 

  22. ASTM: Standard Practice for Ultimate Analysis of Coal and Coke ASTM D3176-15. ASTM International, West Conshohocken (2015)

    Google Scholar 

  23. Okoro, O.V., Sun, Z., Birch, J.: Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: a predictive analysis of the biodiesel product properties. J. Clean. Prod. 168, 1436–1447 (2017). https://doi.org/10.1016/j.jclepro.2017.09.128

    Article  Google Scholar 

  24. Okoro, V.O., Sun, Z., Birch, J.: Prognostic assessment of the viability of hydrothermal liquefaction as a post-resource recovery step after enhanced biomethane generation using co-digestion technologies. Appl. Sci. 8(11), 2290 (2018). https://doi.org/10.3390/app8112290

    Article  Google Scholar 

  25. ASTM: Standard Test Method for Compositional Analysis by Thermogravimetry, ASTM E1131-08. ASTM International, West Conshohocken (2008)

    Google Scholar 

  26. Okoro, O.V., Sun, Z.: The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate biomass. Biomass Convers. Bioref. (2020). https://doi.org/10.1007/s13399-020-00672-7

    Article  Google Scholar 

  27. Liu, L., Luo, X.-B., Ding, L., Luo, S.-L.: (2019) 4—Application of nanotechnology in the removal of heavy metal from water. In: Luo X, Deng F (eds) Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier, pp 83–147. https://doi.org/10.1016/B978-0-12-814837-2.00004-4

  28. Piccin, J., Dotto, G., Pinto, L.: Adsorption isotherms and thermochemical data of FD&C Red n 40 binding by chitosan. Braz. J. Chem. Eng. 28, 295–304 (2011)

    Article  Google Scholar 

  29. Dąbrowski, A.: Adsorption—from theory to practice. Adv. Colloid. Interface. Sci. 93(1), 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  30. Boparai, H.K., Joseph, M., O’Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.029

    Article  Google Scholar 

  31. Chingombe, P., Saha, B., Wakeman, R.J.: Sorption of atrazine on conventional and surface modified activated carbons. J. Colloid Interface Sci. 302(2), 408–416 (2006). https://doi.org/10.1016/j.jcis.2006.06.065

    Article  Google Scholar 

  32. Azizian, S.: Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276(1), 47–52 (2004). https://doi.org/10.1016/j.jcis.2004.03.048

    Article  Google Scholar 

  33. Ayawei, N., Angaye, S.S., Wankasi, D., Dikio, E.D.: Synthesis, characterization and application of Mg/Al layered double hydroxide for the degradation of congo red in aqueous solution. Open J. Phys. Chem. 03, 15 (2015). https://doi.org/10.4236/ojpc.2015.53007

    Article  Google Scholar 

  34. Chiu, C.-W., Wu, M.-T., Lee, J.C.M., Cheng, T.-Y.: Isothermal adsorption properties for the adsorption and removal of reactive blue 221 dye from aqueous solutions by cross-linked β-chitosan glycan as acid-resistant adsorbent. Polymers  10(12), 1328 (2018). https://doi.org/10.3390/polym10121328

    Article  Google Scholar 

  35. Alghamdi, A.A., Al-Odayni, A.-B., Saeed, W.S., Al-Kahtani, A., Alharthi, F.A., Aouak, T.: Efficient adsorption of Lead (II) from aqueous phase solutions using polypyrrole-based activated carbon. Materials  12(12), 2020 (2019). https://doi.org/10.3390/ma12122020

    Article  Google Scholar 

  36. Chen, J.P., Wu: Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties. Langmuir 20(6), 2233–2242 (2004). https://doi.org/10.1021/la0348463

    Article  Google Scholar 

  37. Li, G., Shen, B., Lu, F.: The mechanism of sulfur component in pyrolyzed char from waste tire on the elemental mercury removal. Chem. Eng. J. 273, 446–454 (2015). https://doi.org/10.1016/j.cej.2015.03.040

    Article  Google Scholar 

  38. de Castro, M.D.L., García, J.L.L.: (2002) Chap. 5—Microwave-assisted solid sample treatment. In: de Castro MDL, García JLL (eds) Techniques and Instrumentation in Analytical Chemistry, vol. 24, pp. 179–232. Elsevier. https://doi.org/10.1016/S0167-9244(02)80007-5

  39. Hojo, M., Ueda, T., Daike, C., Takezaki, F., Furuya, Y., Miyamoto, K., Narutaki, A., Kato, R.: Great enhancement in the oxidation ability of dilute nitric acid in nanoscale water-droplets of reverse micelle systems. Bull. Chem. Soc. Jpn 79(8), 1215–1222 (2006)

    Article  Google Scholar 

  40. Pan, H., Huang, S., Li, X., Li, P., Zhu, W.: Spontaneous growth of Au nanoparticles onto CdS, ZnS or PbS thin films for electrochemical immunosensors. Int. J. Electrochem. Sci. 11, 3364–3375 (2016)

    Article  Google Scholar 

  41. Okoro, V.O., Sun, Z., Birch, J.: Catalyst-free biodiesel production methods: a comparative technical and environmental evaluation. Sustainability 10(1), 127 (2018). https://doi.org/10.3390/su10010127

    Article  Google Scholar 

  42. Albishri, H.M., Marwani, H.M.: Chemically modified activated carbon with tris(hydroxymethyl)aminomethane for selective adsorption and determination of gold in water samples. Arab. J. Chem. 9, S252–S258 (2016). https://doi.org/10.1016/j.arabjc.2011.03.017

    Article  Google Scholar 

  43. Okoro, O.V., Sun, Z., Birch, J.: Meat processing waste as a potential feedstock for biochemicals and biofuels—a review of possible conversion technologies. J. Clean. Prod. 142, 1583–1608 (2017). https://doi.org/10.1016/j.jclepro.2016.11.141

    Article  Google Scholar 

  44. Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manag. 33(8), 1714–1728 (2013). https://doi.org/10.1016/j.wasman.2013.05.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Recycling and Economic Development Initiative of South Africa (REDISA) and National Research Foundation (NRF). Appreciation to Stellenbosch University, Department of Process Engineering for provision of facilities and analytical equipment used in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oseweuba Valentine Okoro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maapola, P., Iraola-Arregui, I., du Preez, L. et al. An Investigation into the Applicability of Pyrolyzed Tyre Char and Tyre Crumb for the Recovery of Gold from Acidic Solutions. Waste Biomass Valor 12, 2609–2621 (2021). https://doi.org/10.1007/s12649-020-01173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01173-4

Keywords

Navigation