Skip to main content
Log in

Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Sensory satisfaction is the key to consumer acceptance which also decides the success of any food products in the market. Though different sensory parameters like appearance, odor, and texture are considered for deciding the overall acceptability of food, taste plays a major role. As sensory panels cannot be a true representation of consumer’s taste perception, industries focus on market surveys. In reality, consumers taste perception varies according to the product cost, brand, and their age and health condition. The process of food tasting starts from tongue, where different taste receptors respond to various taste stimuli and pass the signals to the cortex of the brain region. These signals cause the electric current to flow through the brain neural networks and increase oxygen-containing blood utilization in specific brain areas. Using non-invasive gadgets such as electroencephalography, magnetoencephalography, functional MRI, and brain computer interface (BCI) technique, these signals can be sensed and decoded into useful sensory data. This review explains the taste recognition pathways of different taste stimuli and the basic steps involved in BCI techniques for detecting and discriminating them. In addition, it also explores the BCI-related taste-driven sensory studies and the limiting factors associated with them to emerge as a future sensory method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCI:

Brain computer interface

EEG:

Electroencephalography

MEG:

Magnetoencephalography

fMRI:

Functional MRI

PET:

Positron emission tomography

CN:

Cranial nerves

CALHM1:

Calcium homeostasis modulator 1

ENaC:

Epithelial sodium channel

ATP:

Adenosine triphosphate

TRPM5:

Transient receptor potential cation channel subfamily M member 5 /transient receptor potential channel 5

G-Protein or GPCR:

G protein-coupled receptor

PLCβ-2:

Phospholipase Cβ-2

PIP2:

Phosphatidylinositol 4,5-bisphosphate

IP2:

Inositol bisphosphate

IP3:

Inositol triphosphate

DAG:

Diacylglycerol

IP3R3:

IP3 receptors 3

CALHM1/3:

Calcium homeostasis modulator 1/3

P2X2/3:

Purinergic receptor-channel P2X2/3

OTOP1:

Otopetrin 1

Kir2.1 :

Inward rectifier K+ channel

FFT:

Fast Fourier transform

SPM:

Statistical Parametric Mapping

CHR:

Canonical hemodynamic response function

AR:

Autoregressive model

DCM:

Dynamic causal modelling

GLM:

General linear model

EPI:

Echo-planar imaging

BOLD:

Blood oxygenation level dependent

EPSP:

Excitatory postsynaptic potential

IPSP:

Inhibitory postsynaptic potential

ERP:

Event-related potential

EOG:

Electrooculogram

MVPA:

Multivariate pattern approach/analysis

ANN:

Artificial neural network

AGT:

Adaptive Gabor transform

GFP:

Global-field-potential

MSG:

Monosodium glutamate

NaCl:

Sodium chloride

AgCl:

Silver chloride

References

  1. Mihafu FD, Issa JY, Kamiyango MW (2020) Implication of sensory evaluation and quality assessment in food product development: a review. Curr Res Nutr Food Sci J 8:690–702. https://doi.org/10.12944/CRNFSJ.8.3.03

    Article  Google Scholar 

  2. Andersen CA, Kring ML, Andersen RH et al (2019) EEG discrimination of perceptually similar tastes. J Neurosci Res 97:241–252. https://doi.org/10.1002/jnr.24281

    Article  CAS  PubMed  Google Scholar 

  3. Hatzakis E (2019) Nuclear Magnetic Resonance (NMR) Spectroscopy in food science: a comprehensive review. Compr Rev Food Sci Food Saf 18:189–220. https://doi.org/10.1111/1541-4337.12408

    Article  PubMed  Google Scholar 

  4. Suen JLK, Yeung AWK, Wu EX et al (2021) Effective connectivity in the human brain for sour taste, retronasal smell, and combined flavour. Foods 10:2034. https://doi.org/10.3390/foods10092034

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beutler LR, Chen Y, Ahn JS et al (2017) Dynamics of gut-brain communication underlying hunger. Neuron 96:461–475. https://doi.org/10.1016/j.neuron.2017.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gordon EM, Lynch CJ, Gratton C et al (2018) Three distinct sets of connector hubs integrate human brain function. Cell Rep 24:1687–1695. https://doi.org/10.1016/j.celrep.2018.07.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng Y, Mukhopadhyay A, Schrift RY (2017) Do costly options lead to better outcomes? How the protestant work ethic influences the cost–benefit heuristic in goal pursuit. J Mark Res 54:636–649. https://doi.org/10.1509/jmr.15.0105

    Article  Google Scholar 

  8. Almenberg J, Dreber A (2010) When does the price affect the taste? Results from a wine experiment. SSRN Electron J 6:111–121. https://doi.org/10.2139/ssrn.1392208

    Article  Google Scholar 

  9. Becker L, van Rompay TJL, Schifferstein HNJ, Galetzka M (2011) Tough package, strong taste: the influence of packaging design on taste impressions and product evaluations. Food Qual Prefer 22:17–23. https://doi.org/10.1016/j.foodqual.2010.06.007

    Article  Google Scholar 

  10. Worch T, Lê S, Punter P (2010) How reliable are the consumers? Comparison of sensory profiles from consumers and experts. Food Qual Prefer 21:309–318. https://doi.org/10.1016/j.foodqual.2009.06.001

    Article  Google Scholar 

  11. Neeharika B, Suneetha WJ, Kumari BA (2020) Electroencephalography for enhanced understanding of consumer preference. Curr J Appl Sci Technol 39:47–54. https://doi.org/10.9734/cjast/2020/v39i530545

    Article  Google Scholar 

  12. Gonzalez Viejo C, Fuentes S, Howell K et al (2019) Integration of non-invasive biometrics with sensory analysis techniques to assess acceptability of beer by consumers. Physiol Behav 200:139–147. https://doi.org/10.1016/j.physbeh.2018.02.051

    Article  CAS  PubMed  Google Scholar 

  13. Stone H (2012) Sensory Evaluation Practices. Sens Eval Pract. https://doi.org/10.1016/C2009-0-63404-8

    Article  Google Scholar 

  14. Frank GKW, DeGuzman MC, Shott ME (2019) Motivation to eat and not to eat – the psycho-biological conflict in anorexia nervosa. Physiol Behav 206:185–190. https://doi.org/10.1016/j.physbeh.2019.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Farr OM, Li CR, Mantzoros CS (2016) Central nervous system regulation of eating: insights from human brain imaging. Metabolism 65:699–713. https://doi.org/10.1016/j.metabol.2016.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wan Ismail WOAS, Hanif M, Mohamed SB et al (2016) Human emotion detection via brain waves study by using electroencephalogram (EEG). Int J Adv Sci Eng Inf Technol 6:1005. https://doi.org/10.18517/ijaseit.6.6.1072

    Article  Google Scholar 

  17. Ohla K, Busch NA, Lundström JN (2012) Time for taste – a review of the early cerebral processing of gustatory perception. Chemosens Percept 5:87–99. https://doi.org/10.1007/s12078-011-9106-4

    Article  PubMed  Google Scholar 

  18. Gemousakakis T, Kotini A, Anninos P et al (2011) MEG evaluation of taste by gender difference. J Integr Neurosci 10:537–545. https://doi.org/10.1142/S0219635211002828

    Article  CAS  PubMed  Google Scholar 

  19. Gramling L, Kapoulea E, Murphy C (2019) Taste perception and caffeine consumption: an fMRI study. Nutrients 11:34. https://doi.org/10.3390/nu11010034

    Article  Google Scholar 

  20. Dizeux A, Gesnik M, Ahnine H et al (2019) Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates. Nat Commun 10:1400. https://doi.org/10.1038/s41467-019-09349-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Small DM (2010) Taste representation in the human insula. Brain Struct Funct 214:551–561. https://doi.org/10.1007/s00429-010-0266-9

    Article  PubMed  Google Scholar 

  22. Wallroth R, Höchenberger R, Ohla K (2018) Delta activity encodes taste information in the human brain. Neuroimage 181:471–479. https://doi.org/10.1016/j.neuroimage.2018.07.034

    Article  PubMed  Google Scholar 

  23. Trivedi BP (2012) Neuroscience: hardwired for taste. Nature 486:S7-9. https://doi.org/10.1038/486S7a

    Article  CAS  PubMed  Google Scholar 

  24. KalyanaSundaram C, Marichamy P, Devu RR (2017) Artificial neural network based brain signal classification of gustatory stimuli in FPGA. Int J Pure Appl Math 117:111–119

    Google Scholar 

  25. Gómez-Carmona D, Muñoz-Leiva F, Paramio A et al (2021) What do you want to eat? Influence of menu description and design on consumer’s mind: an fmri study. Foods 10:919. https://doi.org/10.3390/foods10050919

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chandran KS, Perumalsamy M (2018) EEG based strategies for human gustation classification using spartan–6 FPGA. Wirel Pers Commun 103:3041–3053. https://doi.org/10.1007/s11277-018-5993-x

    Article  Google Scholar 

  27. Katona J, Farkas I, Ujbanyi T et al (2014) Evaluation of the NeuroSky MindFlex EEG headset brain waves data. In: 2014 IEEE 12th International Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, pp 91–94

  28. Lee DJ, Kulubya E, Goldin P et al (2018) Review of the neural oscillations underlying meditation. Front Neurosci 12:178. https://doi.org/10.3389/fnins.2018.00178

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jia X, Kohn A (2011) Gamma rhythms in the brain. PLoS Biol 9:e1001045. https://doi.org/10.1371/journal.pbio.1001045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Symons AE, El-Deredy W, Schwartze M, Kotz SA (2016) The functional role of neural oscillations in non-verbal emotional communication. Front Hum Neurosci 10:239. https://doi.org/10.3389/fnhum.2016.00239

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chandran KS, Perumalsamy M (2019) EEG – taste classification through sensitivity analysis. Int J Electr Eng Educ. https://doi.org/10.1177/0020720919833036

    Article  Google Scholar 

  32. Frank ME, Hettinger TP (2005) What the tongue tells the brain about taste. Chem Senses 30(1):68–69. https://doi.org/10.1093/chemse/bjh117

    Article  Google Scholar 

  33. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS (2006) The receptors and cells for mammalian taste. Nature 444:288–294. https://doi.org/10.1038/nature05401

    Article  CAS  PubMed  Google Scholar 

  34. Von Molitor E, Riedel K, Krohn M et al (2020) An alternative pathway for sweet sensation: possible mechanisms and physiological relevance. Pflugers Arch Eur J Physiol 472:1667–1691. https://doi.org/10.1007/s00424-020-02467-1

    Article  CAS  Google Scholar 

  35. Behrens M, Meyerhof W (2009) Mammalian bitter taste perception. Cell Mol Life Sci 63:77–96. https://doi.org/10.1007/400_2008_5

    Article  CAS  Google Scholar 

  36. Barlow LA (2015) Progress and renewal in gustation: new insights into taste bud development. Dev 142:3620–3629. https://doi.org/10.1242/dev.120394

    Article  CAS  Google Scholar 

  37. Kikut-Ligaj D, Trzcielinska-Lorych J (2015) How taste works: cells, receptors and gustatory perception. Cell Mol Biol Lett 20:699–716. https://doi.org/10.1515/cmble-2015-0042

    Article  PubMed  Google Scholar 

  38. Gravina SA, Yep GL, Khan M (2013) Human biology of taste. Ann Saudi Med 33:217–222. https://doi.org/10.5144/0256-4947.2013.217

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sbarbati A (2004) Laryngeal chemosensory clusters. Chem Senses 29:683–692. https://doi.org/10.1093/chemse/bjh071

    Article  CAS  PubMed  Google Scholar 

  40. Behrens M, Meyerhof W (2009) Mammalian bitter taste perception. Results Probl Cell Differ 47:203–220. https://doi.org/10.1007/400_2008_5

    Article  CAS  PubMed  Google Scholar 

  41. Kinnamon SC, Finger TE (2019) Recent advances in taste transduction and signaling. F1000Research 8:2117. https://doi.org/10.12688/f1000research.21099.1

    Article  CAS  Google Scholar 

  42. Lee AA, Owyang C (2019) Sugars sweet taste receptors and brain responses. In: Patel VB (ed) Molecular Nutrition: Carbohydrates. Elsevier, Amsterdam, pp 265–283

    Chapter  Google Scholar 

  43. Ishimaru Y (2015) Molecular mechanisms underlying the reception and transmission of sour taste information. Biosci Biotechnol Biochem 79:171–176. https://doi.org/10.1080/09168451.2014.975187

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto K, Ishimaru Y (2013) Oral and extra-oral taste perception. Semin Cell Dev Biol 24:240–246. https://doi.org/10.1016/j.semcdb.2012.08.005

    Article  PubMed  Google Scholar 

  45. Taruno A, Nomura K, Kusakizako T et al (2021) Taste transduction and channel synapses in taste buds. Pflügers Arch Eur J Physiol 473:3–13. https://doi.org/10.1007/s00424-020-02464-4

    Article  CAS  Google Scholar 

  46. Bigiani A (2020) Salt taste Senses A Compr Ref 3:247–263. https://doi.org/10.1016/B978-0-12-809324-5.23910-2

    Article  Google Scholar 

  47. Bigiani A (2017) Calcium homeostasis modulator 1-like currents in rat fungiform taste cells expressing amiloride-sensitive sodium currents. Chem Senses 42:343–359. https://doi.org/10.1093/chemse/bjx013

    Article  CAS  PubMed  Google Scholar 

  48. Vera LA, Wooding SP (2017) Taste: links in the chain from tongue to brain. Front Young Minds 5:33. https://doi.org/10.3389/frym.2017.00033

    Article  Google Scholar 

  49. Smith DV, Margolskee RF (2001) Making sense of taste. Sci Am 284:32–39

    Article  CAS  Google Scholar 

  50. Teplan M (2002) Fundamentals of EEG measurement. Meas Sci Rev 2:1–11

    Google Scholar 

  51. Zhang C, Qiao K, Wang L et al (2019) A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging. J Neurosci Methods 325:108318. https://doi.org/10.1016/j.jneumeth.2019.108318

    Article  PubMed  Google Scholar 

  52. Sohrabi F, Hamidi SM (2017) Optical detection of brain activity using plasmonic ellipsometry technique. Sensors Actuators B Chem 251:153–163. https://doi.org/10.1016/j.snb.2017.05.037

    Article  CAS  Google Scholar 

  53. Kaneko D, Toet A, Brouwer AM et al (2018) Methods for evaluating emotions evoked by food experiences: a literature review. Front Psychol 9:911. https://doi.org/10.3389/fpsyg.2018.00911

    Article  PubMed  PubMed Central  Google Scholar 

  54. Songsamoe S, Saengwong-ngam R, Koomhin P, Matan N (2019) Understanding consumer physiological and emotional responses to food products using electroencephalography (EEG). Trends Food Sci Technol 93:167–173. https://doi.org/10.1016/j.tifs.2019.09.018

    Article  CAS  Google Scholar 

  55. Campisi P, La Rocca D (2014) Brain waves for automatic biometric-based user recognition. IEEE Trans Inf Forensics Secur 9:782–800. https://doi.org/10.1109/TIFS.2014.2308640

    Article  Google Scholar 

  56. Subha DP, Joseph PK, Acharya UR, Lim CM (2010) EEG signal analysis: a survey. J Med Syst 34:195–212. https://doi.org/10.1007/s10916-008-9231-z

    Article  PubMed  Google Scholar 

  57. Horikawa M, Harada H, Yarita M (2003) Detection limit in low-amplitude EEG measurement. J Clin Neurophysiol 20:45–53. https://doi.org/10.1097/00004691-200302000-00006

    Article  PubMed  Google Scholar 

  58. Kwong J, Chandrakasan AP (2011) An energy-efficient biomedical signal processing platform. IEEE J Solid-State Circuits 46:1742–1753. https://doi.org/10.1109/JSSC.2011.2144450

    Article  Google Scholar 

  59. Khader P, Rösler F (2004) EEG power and coherence analysis of visually presented nouns and verbs reveals left frontal processing differences. Neurosci Lett 354:111–114. https://doi.org/10.1016/j.neulet.2003.10.016

    Article  CAS  PubMed  Google Scholar 

  60. Sinha SR, Sullivan LR, Sabau D et al (2016) American Clinical Neurophysiology Society Guideline 1: Minimum Technical Requirements for Performing Clinical Electroencephalography. Neurodiagn J 56:235–244. https://doi.org/10.1080/21646821.2016.1245527

    Article  PubMed  Google Scholar 

  61. Wallroth R, Ohla K (2018) Delta activity encodes taste information in the human brain. Delta Act encodes Tast Inf Hum brain 181:300194. https://doi.org/10.1101/300194

    Article  CAS  Google Scholar 

  62. Dalenberg JR, Hoogeveen HR, Lorist MM (2018) Physiological measurements. In: Ares G, Varela P (eds) Methods in Consumer Research, vol 2. Elsevier, Amsterdam, pp 253–277

    Chapter  Google Scholar 

  63. Luck SJ (2005) Plotting measurement and analysis. An Introd to Event-Related Potential Tech 78:388

    Google Scholar 

  64. Larson MJ, Carbine KA (2017) Sample size calculations in human electrophysiology (EEG and ERP) studies: a systematic review and recommendations for increased rigor 111:33–41. Int J Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2016.06.015

    Article  PubMed  Google Scholar 

  65. Agarwal S (2015) Introduction to Neuromarketing and Consumer Neuroscience. J Consum Mark 32:302–303. https://doi.org/10.1108/jcm-08-2014-1118

    Article  Google Scholar 

  66. Du YP, Chu R, Tregellas JR (2014) Enhancing the detection of BOLD signal in fMRI by reducing the partial volume effect. Comput Math Methods Med 2014:1–9. https://doi.org/10.1155/2014/973972

    Article  Google Scholar 

  67. Buxton RB (2013) The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys 76:096601. https://doi.org/10.1088/0034-4885/76/9/096601

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gore JC (2003) Principles and practice of functional MRI of the human brain. J Clin Invest 112:4–9. https://doi.org/10.1172/JCI19010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ogawa H, Wakita M, Hasegawa K et al (2005) Functional MRI detection of activation in the primary gustatory cortices in humans. Chem Senses 30:583–592. https://doi.org/10.1093/chemse/bji052

    Article  CAS  PubMed  Google Scholar 

  70. Friston K (2012) Ten ironic rules for non-statistical reviewers. Neuroimage 61:1300–1310. https://doi.org/10.1016/j.neuroimage.2012.04.018

    Article  PubMed  Google Scholar 

  71. Mumford JA, Nichols TE (2008) Power calculation for group fMRI studies accounting for arbitrary design and temporal autocorrelation. Neuroimage 39:261–268. https://doi.org/10.1016/j.neuroimage.2007.07.061

    Article  PubMed  Google Scholar 

  72. Pajula J, Tohka J (2016) How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Comput Intell Neurosci

  73. Harding IH, Andrews ZB, Mata F et al (2018) Brain substrates of unhealthy versus healthy food choices: influence of homeostatic status and body mass index. Int J Obes 42:448–454. https://doi.org/10.1038/ijo.2017.237

    Article  CAS  Google Scholar 

  74. Canna A, Prinster A, Cantone E et al (2019) Intensity-related distribution of sweet and bitter taste fMRI responses in the insular cortex. Hum Brain Mapp 40:3631–3646. https://doi.org/10.1002/hbm.24621

    Article  PubMed  PubMed Central  Google Scholar 

  75. Canna A, Prinster A, Fratello M et al (2019) A low-cost open-architecture taste delivery system for gustatory fMRI and BCI experiments. J Neurosci Methods 311:1–12. https://doi.org/10.1016/j.jneumeth.2018.10.003

    Article  PubMed  Google Scholar 

  76. Sommer JU, Maboshe W, Griebe M et al (2012) A mobile olfactometer for fMRI-studies. J Neurosci Methods 209:189–194. https://doi.org/10.1016/j.jneumeth.2012.05.026

    Article  PubMed  Google Scholar 

  77. Peelle JE (2014) Methodological challenges and solutions in auditory functional magnetic resonance imaging. Front Neurosci 8:253. https://doi.org/10.3389/fnins.2014.00253

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fassbender C, Mukherjee P, Schweitzer JB (2017) Reprint of: Minimizing noise in pediatric task-based functional MRI; Adolescents with developmental disabilities and typical development. Neuroimage 154:230–239. https://doi.org/10.1016/j.neuroimage.2017.05.007

    Article  PubMed  Google Scholar 

  79. Baillet S (2017) Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 20:327–339. https://doi.org/10.1038/nn.4504

    Article  CAS  PubMed  Google Scholar 

  80. Hansen P, Kringelbach M, Salmelin R (2010) MEG: an introduction to methods. Oxford University Press, England. https://doi.org/10.1093/acprof:oso/9780195307238.001.0001

    Article  Google Scholar 

  81. Anninos P, Kotini A, Adamopoulos A et al (2006) Identification of taste quality with the use of MEG. J Integr Neurosci 5:535–540. https://doi.org/10.1142/S0219635206001318

    Article  CAS  PubMed  Google Scholar 

  82. Chaumon M, Puce A, George N (2019) Statistical power: implications for planning MEG studies. bioRxiv. https://doi.org/10.1101/852202

  83. Ramadan RA, Refat S, Elshahed MA, Ali RA (2015) Basics of brain computer interface. Intell Syst Ref Libr. https://doi.org/10.1007/978-3-319-10978-7_2

    Article  Google Scholar 

  84. Cohen MX (2014) Analyzing Neural Time Series Data. The MIT Press, Cambridge

    Book  Google Scholar 

  85. Cichocki A, Sanei S (2007) EEG/MEG signal processing. Comput Intell Neurosci 2007:2–4. https://doi.org/10.1155/2007/97026

    Article  Google Scholar 

  86. Ghasemi-Varnamkhasti M, Mohtasebi SS, Siadat M (2010) Biomimetic-based odor and taste sensing systems to food quality and safety characterization: an overview on basic principles and recent achievements. J Food Eng 100:377–387. https://doi.org/10.1016/j.jfoodeng.2010.04.032

    Article  Google Scholar 

  87. Avery JA, Liu AG, Ingeholm JE et al (2020) Taste quality representation in the human brain. J Neurosci 40:1042–1052. https://doi.org/10.1523/JNEUROSCI.1751-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hashida JC, de Sousa Silva AC, Souto S, Costa EJX (2005) EEG pattern discrimination between salty and sweet taste using adaptive Gabor transform. Neurocomputing 68:251–257. https://doi.org/10.1016/j.neucom.2005.04.004

    Article  Google Scholar 

  89. Crouzet SM, Busch NA, Ohla K (2015) Taste quality decoding parallels taste sensations. Curr Biol 25:890–896. https://doi.org/10.1016/j.cub.2015.01.057

    Article  CAS  PubMed  Google Scholar 

  90. Wallroth R, Ohla K (2018) As soon as you taste it: Evidence for sequential and parallel processing of gustatory information. eNeuro. https://doi.org/10.1523/ENEURO.0269-18.2018

  91. Carney RSE (2019) Parallel and sequential sequences of taste detection and discrimination in humans. eNeuro 6:1–2. https://doi.org/10.1523/ENEURO.0010-19.2019

    Article  CAS  Google Scholar 

  92. Yücel N, Yücel A, Yılmaz AS et al (2015) Cofee tasting experiment from the neuromarketing perspective. In: WEI International Academic Conference Proceedings, pp 29–35

  93. Horska E, Bercik J, Krasnodebski A et al (2016) Innovative approaches to examining consumer preferences when choosing wines. Agric Econ 62:124–133. https://doi.org/10.17221/290/2015-AGRICECON

    Article  Google Scholar 

  94. Mouillot T, Parise A, Greco C et al (2020) Differential cerebral gustatory responses to sucrose, aspartame, and stevia using gustatory evoked potentials in humans. Nutrients 12:322. https://doi.org/10.3390/nu12020322

    Article  CAS  PubMed Central  Google Scholar 

  95. Filho ERT, Esmerino EA, de Almeida SV et al (2020) Electroencephalography and acceptance test to assess sodium reduction in tomato sauce: an exploratory research. Emirates J Food Agric 32:417–425. https://doi.org/10.9755/ejfa.2020.v32.i6.2112

    Article  Google Scholar 

  96. Masumoto Y, Morinushi T, Kawasaki H et al (1999) Effects of three principal constituents in chewing gum on electroencephalographic activity. Psychiatry Clin Neurosci 53:17–23. https://doi.org/10.1046/j.1440-1819.1999.00465.x

    Article  CAS  PubMed  Google Scholar 

  97. Chen Y, Huang AX, Faber I et al (2020) Assessing the Influence of visual-taste congruency on perceived sweetness and product liking in immersive VR. Foods 9:465. https://doi.org/10.3390/foods9040465

    Article  CAS  PubMed Central  Google Scholar 

  98. Ohla K, Toepel U, le Coutre J, Hudry J (2012) Visual-gustatory interaction: orbitofrontal and insular cortices mediate the effect of high-calorie visual food cues on taste pleasantness. PLoS ONE 7:e32434. https://doi.org/10.1371/journal.pone.0032434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hsu L, Chen Y-J (2021) Does coffee taste better with latte art? A neuroscientific perspective. Br Food J 123:1931–1946. https://doi.org/10.1108/BFJ-07-2020-0612

    Article  Google Scholar 

  100. Domracheva M, Kulikova S (2020) EEG correlates of perceived food product similarity in a cross-modal taste-visual task. Food Qual Prefer 85:103980. https://doi.org/10.1016/j.foodqual.2020.103980

    Article  Google Scholar 

  101. Yeung AWK, Wong NSM, Eickhoff SB (2020) Empirical assessment of changing sample-characteristics in task-fMRI over two decades: an example from gustatory and food studies. 1–14. https://doi.org/10.1002/hbm.24957

  102. Schoenfeld MA, Neuer G, Tempelmann C et al (2004) Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex. Neuroscience 127:347–353. https://doi.org/10.1016/j.neuroscience.2004.05.024

    Article  CAS  PubMed  Google Scholar 

  103. Prinster A, Cantone E, Verlezza V et al (2017) Cortical representation of different taste modalities on the gustatory cortex: a pilot study. PLoS ONE 12:e0190164. https://doi.org/10.1371/journal.pone.0190164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK (2019) Distinct representations of basic taste qualities in human gustatory cortex. Nat Commun 10:1–8. https://doi.org/10.1038/s41467-019-08857-z

    Article  CAS  Google Scholar 

  105. Iannilli E, Singh PB, Schuster B et al (2012) Taste laterality studied by means of umami and salt stimuli: an fMRI study. Neuroimage 60:426–435. https://doi.org/10.1016/j.neuroimage.2011.12.088

    Article  PubMed  Google Scholar 

  106. Yeung AWK, Tanabe HC, Suen JLK, Goto TK (2016) Taste intensity modulates effective connectivity from the insular cortex to the thalamus in humans. Neuroimage 135:214–222. https://doi.org/10.1016/j.neuroimage.2016.04.057

    Article  PubMed  Google Scholar 

  107. Stice E, Burger KS, Yokum S (2013) Relative ability of fat and sugar tastes to activate reward, gustatory, and somatosensory regions. Am J Clin Nutr 98:1377–1384. https://doi.org/10.3945/ajcn.113.069443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hoogeveen HR, Dalenberg JR, Renken RJ et al (2015) Neural processing of basic tastes in healthy young and older adults - an fMRI study. Neuroimage 119:1–12. https://doi.org/10.1016/j.neuroimage.2015.06.017

    Article  PubMed  Google Scholar 

  109. Kishi M, Sadachi H, Nakamura J, Tonoike M (2017) Functional magnetic resonance imaging investigation of brain regions associated with astringency. Neurosci Res. https://doi.org/10.1016/j.neures.2017.03.009

    Article  PubMed  Google Scholar 

  110. Wai A, Yeung K (2020) Brain responses to watching food commercials compared with nonfood commercials: a meta-analysis on neuroimaging studies. Public Health Nutr 24(8):2153–2160. https://doi.org/10.1017/S1368980020003122

    Article  Google Scholar 

  111. Small DM, Gregory MD, Mak YE et al (2003) Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron 39:701–711. https://doi.org/10.1016/S0896-6273(03)00467-7

    Article  CAS  PubMed  Google Scholar 

  112. Spetter MS, Smeets PAM, de Graaf C, Viergever MA (2010) Representation of sweet and salty taste intensity in the brain. Chem Senses 35:831–840. https://doi.org/10.1093/chemse/bjq093

    Article  CAS  PubMed  Google Scholar 

  113. Veldhuizen MG, Albrecht J, Zelano C et al (2011) Identification of human gustatory cortex by activation likelihood estimation 2266:2256–2266. https://doi.org/10.1002/hbm.21188

    Article  Google Scholar 

  114. Wai A, Yeung K, Goto TK, Leung WK (2018) Affective value, intensity and quality of liquid tastants/food discernment in the human brain: an activation likelihood estimation meta-analysis. Neuroimage 169:189–199. https://doi.org/10.1016/j.neuroimage.2017.12.034

    Article  Google Scholar 

  115. Nakamura Y, Goto TK, Tokumori K et al (2012) The temporal change in the cortical activations due to salty and sweet tastes in humans: FMRI and time-intensity sensory evaluation. NeuroReport 23:400–404. https://doi.org/10.1097/WNR.0b013e32835271b7

    Article  PubMed  Google Scholar 

  116. Wai A, Yeung K, Sui N et al (2019) NeuroImage human brain responses to gustatory and food stimuli : a meta-evaluation of neuroimaging meta-analyses. Neuroimage 202:116111. https://doi.org/10.1016/j.neuroimage.2019.116111

    Article  Google Scholar 

  117. Smeets PAM, Weijzen P, de Graaf C, Viergever MA (2011) Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. Neuroimage 54:1367–1374. https://doi.org/10.1016/j.neuroimage.2010.08.054

    Article  PubMed  Google Scholar 

  118. Werner CP, Birkhaeuer J, Locher C et al (2021) Price information influences the subjective experience of wine: a framed field experiment. Food Qual Prefer 92:104223. https://doi.org/10.1016/j.foodqual.2021.104223

    Article  Google Scholar 

  119. Kotini A, Anninos P, Gemousakakis T, Adamopoulos A (2016) The effects of sweet, bitter, salty and sour stimuli on alpha rhythm. A Meg Study Maedica 11:208–213

    PubMed  Google Scholar 

  120. Gemousakakis T, Anninos P, Zissimopoulos A et al (2013) A study on the age dependency of gustatory states: low-frequency spectral component in the resting-state MEG. J Integr Neurosci 12:427–439. https://doi.org/10.1142/S0219635213500258

    Article  CAS  PubMed  Google Scholar 

  121. Verhagen JV, Engelen L (2006) The neurocognitive bases of human multimodal food perception: Sensory integration. Neurosci Biobehav Rev 30:613–650. https://doi.org/10.1016/j.neubiorev.2005.11.003

    Article  PubMed  Google Scholar 

  122. van der Laan LN, de Ridder DTD, Viergever MA, Smeets PAM (2011) The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55:296–303. https://doi.org/10.1016/j.neuroimage.2010.11.055

    Article  PubMed  Google Scholar 

  123. Huerta CI, Sarkar PR, Duong TQ et al (2014) Neural bases of food perception: coordinate-based meta-analyses of neuroimaging studies in multiple modalities. Obesity 22:1439–1446. https://doi.org/10.1002/oby.20659

    Article  PubMed  Google Scholar 

  124. Schubert CR, Cruickshanks KJ, Fischer ME et al (2017) Sensory impairments and cognitive function in middle-aged adults. Journals Gerontol Ser A Biol Sci Med Sci 72:1087–1090. https://doi.org/10.1093/gerona/glx067

    Article  Google Scholar 

  125. Williams JA, Bartoshuk LM, Fillingim RB, Dotson CD (2016) Exploring ethnic differences in taste perception. Chem Senses 41:449–456. https://doi.org/10.1093/chemse/bjw021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Mojet J, Christ-Hazelhof E, Heidema J (2001) Taste perception with age: generic or specific losses in threshold sensitivity to the five basic tastes? Chem Senses 26:845–860. https://doi.org/10.1093/chemse/26.7.845

    Article  CAS  PubMed  Google Scholar 

  127. Smeets PAM, de Graaf C, Stafleu A et al (2006) Effect of satiety on brain activation during chocolate tasting in men and women. Am J Clin Nutr 83:1297–1305. https://doi.org/10.1093/ajcn/83.6.1297

    Article  CAS  PubMed  Google Scholar 

  128. Bartoshuk LM, Murphy C, Cleveland CT (1978) Sweet taste of dilute NaCl: psychophysical evidence for a sweet stimulus. Physiol Behav 21:609–613. https://doi.org/10.1016/0031-9384(78)90138-5

    Article  CAS  PubMed  Google Scholar 

  129. O’Mahony M (1973) Qualitative description of low concentration sodium chloride solutions. Br J Psychol 64:601–606. https://doi.org/10.1111/j.2044-8295.1973.tb01387.x

    Article  PubMed  Google Scholar 

  130. Mcbride RL, Finlay DC (1990) Perceptual integration of tertiary taste mixtures. Percept Psychophys 48:326–330. https://doi.org/10.3758/BF03206683

    Article  CAS  PubMed  Google Scholar 

  131. Talavera K, Ninomiya Y, Winkel C et al (2007) Influence of temperature on taste perception. Cell Mol Life Sci 64:377–381. https://doi.org/10.1007/s00018-006-6384-0

    Article  CAS  PubMed  Google Scholar 

  132. Schiffman SS, Sattely-Miller EA, Graham BG et al (2000) Effect of temperature, pH, and ions on sweet taste. Physiol Behav 68:469–481. https://doi.org/10.1016/S0031-9384(99)00205-X

    Article  CAS  PubMed  Google Scholar 

  133. Nakamura M, Kurihara K (1991) Differential temperature dependence of taste nerve responses to various taste stimuli in dogs and rats. Am J Physiol Regul Integr Comp Physiol 261:R1402–R1408. https://doi.org/10.1152/ajpregu.1991.261.6.r1402

    Article  CAS  Google Scholar 

  134. Feeney E, Leacy L, O’Kelly M et al (2019) Sweet and umami taste perception differs with habitual exercise in males. Nutrients 11:155. https://doi.org/10.3390/nu11010155

    Article  CAS  PubMed Central  Google Scholar 

  135. De Araujo IE, Rolls ET (2004) Representation in the human brain of food texture and oral fat. J Neurosci 24:3086–3093. https://doi.org/10.1523/JNEUROSCI.0130-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Krut LH, Perrin MJ, Bronte-Stewart B (1961) Taste perception in smokers and non-smokers. BMJ 1:384–387. https://doi.org/10.1136/bmj.1.5223.384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Noel C, Dando R (2015) The effect of emotional state on taste perception. Appetite 95:89–95. https://doi.org/10.1016/j.appet.2015.06.003

    Article  PubMed  Google Scholar 

  138. Nakagawa M, Mizuma K, Inui T (1996) Changes in taste perception following mental or physical stress. Chem Senses 21:195–200. https://doi.org/10.1093/chemse/21.2.195

    Article  CAS  PubMed  Google Scholar 

  139. Rolls ET, McCabe C (2007) Enhanced affective brain representations of chocolate in cravers vs. non-cravers. Eur J Neurosci 26:1067–1076. https://doi.org/10.1111/j.1460-9568.2007.05724.x

    Article  PubMed  Google Scholar 

  140. Menon P, Nguyen P, Kim S et al (2017) Context matters: insights from two randomized evaluations of behavior change interventions on factors influencing infant and young child feeding practices in Bangladesh and Vietnam. FASEB J 31:165.6–165.6. https://doi.org/10.1096/fasebj.31.1_supplement.165.6

  141. Portnova G (2017) EEG study of the disgust and pleasant stimuli perception in 5–6 years children and adults. NeuroQuantology 15:130–135. https://doi.org/10.14704/nq.2017.15.3.1084

    Article  Google Scholar 

  142. Park JH, Song DK (2019) Sweet taste receptors as a tool for an amplifying pathway of glucose-stimulated insulin secretion in pancreatic β cells. Pflugers Arch Eur J Physiol 471(4):655–657

    Article  CAS  Google Scholar 

  143. Meyers B, Brewer MS (2008) Sweet taste in man: a review. J Food Sci 73:R81–R90. https://doi.org/10.1111/j.1750-3841.2008.00832.x

    Article  CAS  PubMed  Google Scholar 

  144. Han P, Bagenna B, Fu M (2019) The sweet taste signalling pathways in the oral cavity and the gastrointestinal tract affect human appetite and food intake: a review. Int J Food Sci Nutr 70:125–135. https://doi.org/10.1080/09637486.2018.1492522

    Article  CAS  PubMed  Google Scholar 

  145. Kinnamon SC (2009) Umami taste transduction mechanisms. Am J Clin Nutr 90:753S-755S. https://doi.org/10.3945/ajcn.2009.27462K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuhn ME (2016) Decoding the science of taste. Food Technol 70:18–29

    Google Scholar 

  147. Oka Y, Butnaru M, von Buchholtz L et al (2013) High salt recruits aversive taste pathways. Nature 494:472–475. https://doi.org/10.1038/nature11905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ye W, Chang RB, Bushman JD et al (2016) The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. Proc Natl Acad Sci USA 113:E229–E238. https://doi.org/10.1073/pnas.1514282112

    Article  CAS  PubMed  Google Scholar 

  149. Finger TE, Danilova V, Barrows J et al (2005) Neuroscience: ATP signalling is crucial for communication from taste buds to gustatory nerves. Science 310:1495–1499. https://doi.org/10.1126/science.1118435

    Article  CAS  PubMed  Google Scholar 

  150. Larson ED, Vandenbeuch A, Voigt A et al (2015) The role of 5-HT3 receptors in signaling from taste buds to nerves. J Neurosci 35:15984–15995. https://doi.org/10.1523/JNEUROSCI.1868-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mahendran.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbarasan, R., Gomez Carmona, D. & Mahendran, R. Human Taste-Perception: Brain Computer Interface (BCI) and Its Application as an Engineering Tool for Taste-Driven Sensory Studies. Food Eng Rev 14, 408–434 (2022). https://doi.org/10.1007/s12393-022-09308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09308-0

Keywords

Navigation