Skip to main content

Advertisement

Log in

Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are the world’s leading cause of death, accounting for 32% of all fatalities. Although therapeutic agents are available for CVDs, however, most of them have significant limitations such as the time-dependency effect, hypotension, and bradycardia. To overcome the limitations of current pharmacological therapies, new molecular targets and pathways need to be identified and investigated to provide better treatment options for CVDs. Recent evidence suggested the involvement of pyruvate kinase M2 (PKM2) and targeting PKM2 by its modulators (inhibitors and activators) has shown promising results in several CVDs. PKM2 regulates gene activation in the context of apoptosis, mitosis, hypoxia, inflammation, and metabolic reprogramming. PKM2 modulators might have a significant impact on the molecular pathways involved in CVD pathogenesis. Therefore, PKM2 modulators can be one of the therapeutic options for CVDs. This review provides an insight into PKM2 involvement in various CVDs along with their therapeutic potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

Akt:

Serine/threonine protein kinase

ATP:

Adenosine triphosphate

AMPK:

5′ Adenosine monophosphate-activated protein kinase

Bcl2:

B cell lymphoma 2

CK-MB:

Creatine kinase-MB

COX-2:

Cyclooxygenase-2

DMAMCL:

Dimethylaminomicheliolide

DASA-58:

3-(4-(2,3-Dihydrobenzo[b] [1, 4] dioxin-6-ylsulfonyl)-1,4-diazepan-1-ylsulfonyl) aniline

FGF:

Fibroblast growth factor

GLUT-1:

Glucose transporter 1

GSH:

Glutathione

GSH-Px:

Glutathione peroxidase

GSK3:

Glycogen synthase kinase 3

HK-2:

Hexokinase 2

HSP90:

Heat shock protein 90

IL-1β:

Interleukin 1 beta

iNOS:

Inducible nitric oxide synthase

Jak2:

Janus kinase 2

MDA:

Malondialdehyde

MAPK:

Mitogen-activated protein kinase

MMP:

Matrix metalloproteinases

mTOR:

Mammalian target of rapamycin

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-kB:

Nuclear factor kappa B

NLRP3:

NLR family pyrin domain-containing 3

Oct4:

Octamer-binding transcription factor 4

Ox-LDL:

Oxidized low-density lipoprotein

p53:

Tumor suppressor p53

PDK-2:

Pyruvate dehydrogenase kinase isoform 2

RAC1:

Rac family small GTPase 1

ROS:

Reactive oxygen species

Smad2/3:

Signal transducer protein for TGF-β

SAICAR:

Succinylaminoimidazolecarboxamide ribose-5′-phosphate

SOD:

Superoxide dismutase

Src:

Non-receptor tyrosine kinase

STAT3:

Signal transducer and activator of transcription 3

TGF-β:

Transforming growth factor beta

TEPP-46:

6-[(3 Aminophenyl) methyl]-4,6-dihydro-4-methyl-2-(methylsulfinyl)-5 h-thieno [2′,3′:4,5] pyrrolo [2,3-d] pyridazin-5-one

References

  1. Olvera Lopez E, Ballard BD, Jan A. Cardiovascular disease. StatPearls. Treasure Island: StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2022.

  2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–743.

    Article  PubMed  Google Scholar 

  3. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–492.

    Article  PubMed  Google Scholar 

  4. Prabhakaran D, Jeemon P, Sharma M, Roth GA, Johnson C, Harikrishnan S, et al. The changing patterns of cardiovascular diseases and their risk factors in the states of India: the Global Burden of Disease Study 1990–2016. Lancet Glob Health. 2018;6:e1339–51.

    Article  Google Scholar 

  5. Prabhakaran D, Jeemon P, Roy A. Cardiovascular diseases in India: current epidemiology and future directions. Circulation. 2016;133:1605–20.

    Article  PubMed  Google Scholar 

  6. Leeder S, Raymond S, Greenberg H, Liu H, Esson K. A race against time: the challenge of cardiovascular disease in developing economies. New Delhi: Centre for Chronic Disease Control; 2004.

    Google Scholar 

  7. Li P, Fu Y, Ru J, Huang C, Du J, Zheng C, et al. Insights from systems pharmacology into cardiovascular drug discovery and therapy. BMC Syst Biol. 2014;8:141.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rees ML, Subramaniam J, Li Y, Hamilton DJ, Frazier OH, Taegtmeyer H. A PKM2 signature in the failing heart. Biochem Biophys Res Commun. 2015;459:430–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Archer SL. Pyruvate kinase and Warburg metabolism in pulmonary arterial hypertension: uncoupled glycolysis and the cancer-like phenotype of pulmonary arterial hypertension. Circulation. 2017;136:2486–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hauck L, Dadson K, Chauhan S, Grothe D, Billia F. Inhibiting the PKM2/β-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ. 2021;28:1398–417.

    Article  CAS  PubMed  Google Scholar 

  11. Rihan M, Nalla LV, Dharavath A, Shard A, Kalia K, Khairnar A. Pyruvate kinase M2: a metabolic bug in re-wiring the tumor microenvironment. Cancer Microenviron. 2019;12:149–67.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Chen S, Yu D. Protein kinase function of pyruvate kinase M2 and cancer. Cancer Cell Int. 2020;20:523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, et al. PKM2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation. 2020;141:1249–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Williams AL, Khadka V, Tang M, Avelar A, Schunke KJ, Menor M, et al. HIF1 mediates a switch in pyruvate kinase isoforms after myocardial infarction. Physiol Genomics. 2018;50:479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Handzlik MK, Tooth DJ, Constantin-Teodosiu D, Greenhaff PL, Cole MA. Potential role for pyruvate kinase M2 in the regulation of murine cardiac glycolytic flux during in vivo chronic hypoxia. Biosci Rep. 2021;41:BSR20203170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cori CF. Some highlights of the early period of bioenergetics. Mol Cell Biochem. 1974;5:47–53.

    Article  CAS  PubMed  Google Scholar 

  17. Barnett JA. A history of research on yeasts 5: the fermentation pathway. Yeast. 2003;20:509–43.

    Article  CAS  PubMed  Google Scholar 

  18. Valentine WN, Tanaka KR, Miwa S. A specific erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia. Trans Assoc Am Physicians. 1961;74:100–10.

    CAS  PubMed  Google Scholar 

  19. Miwa S, Kanno H, Fujii H. Pyruvate kinase deficiency: historical perspective and recent progress of molecular genetics. Am J Hematol. 1993;42:31–5.

    Article  CAS  PubMed  Google Scholar 

  20. Volpato S, Vigi V, Cattarozzi G. Nonspherocytic haemolytic anaemia and severe jaundice in a newborn with partial pyruvate kinase deficiency. Acta Paediatr Scand. 1968;57:59–64.

    Article  CAS  PubMed  Google Scholar 

  21. Bossu M, Dacha M, Fornaini G. Neonatal hemolysis due to a transient severity of inherited pyruvate kinase deficiency. Acta Haematol. 1968;40:166–75.

    Article  CAS  PubMed  Google Scholar 

  22. Baughan MA, Paglia D, Schneider A, Valentine W. An unusual hematological syndrome with pyruvate-kinase deficiency and thalassemia minor in the kindreds. Acta Haematol. 1968;39:345–58.

    Article  CAS  PubMed  Google Scholar 

  23. Poulton K, Curtis E, Rossi M. Muscle pyruvate kinase deficiency: glycogen storage disease or mitochondrial myopathy? Funct Neurol. 1997;12:25–32.

    CAS  PubMed  Google Scholar 

  24. Tanaka T, Harano Y, Morimura H, Mori R. Evidence for the presence of two types of pyruvate kinase in rat liver. Biochem Biophys Res Commun. 1965;21:55–60.

    Article  CAS  PubMed  Google Scholar 

  25. Susor WA, Rutter WJ. Some distinctive properties of pyruvate kinase purified from rat liver. Biochem Biophys Res Commun. 1968;30:14–20.

    Article  CAS  PubMed  Google Scholar 

  26. Haeckel R, Hess B, Lauterborn W, Wüster KH. Purification and allosteric properties of yeast pyruvate kinase. Physiol Chem. 1968;349(5):699–714.

    Article  CAS  Google Scholar 

  27. Szepesi B, Freedland RA. Dietary regulation of pyruvate kinase synthesis in rat liver. J Nutr. 1968;95:591–602.

    Article  CAS  PubMed  Google Scholar 

  28. Cottam GL, Hollenberg PF, Coon MJ. Subunit structure of rabbit muscle pyruvate kinase. J Biol Chem. 1969;244:1481–6.

    Article  CAS  PubMed  Google Scholar 

  29. Osterman J, Fritz PJ. Pyruvate kinase isozymes: a comparative study in tissues of various mammalian species. Comp Biochem Physiol B Biochem Mol Biol. 1973;44:1077–85.

    Article  CAS  Google Scholar 

  30. Kamel R, Schwarzfischer F. Pyruvate kinase isozyme patterns of human neoplastic, fetal and adult tissues. Humangenetik. 1975;28:65–9.

    CAS  PubMed  Google Scholar 

  31. Van Berkel TJ. Proceedings: Metabolic significance of the two interconvertible forms of M2-type pyruvate kinase. Hoppe Seylers Z Physiol Chem. 1974;355:1175.

    PubMed  Google Scholar 

  32. Takegawa S, Fujii H, Miwa S. Change of pyruvate kinase isozymes from M2-to L-type during development of the red cell. Br J Haematol. 1983;54:467–74.

    Article  CAS  PubMed  Google Scholar 

  33. Noguchi T, Inoue H, Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem. 1986;261:13807–12.

    Article  CAS  PubMed  Google Scholar 

  34. Presek P, Reinacher M, Eigenbrodt E. Pyruvate kinase type M2 is phosphorylated at tyrosine residues in cells transformed by Rous sarcoma virus. FEBS Lett. 1988;242:194–8.

    Article  CAS  PubMed  Google Scholar 

  35. Moule S, McGivan J. Epidermal growth factor stimulates the phosphorylation of pyruvate kinase in fleshly isolated rat hepatocytes. FEBS Lett. 1991;280:37–40.

    Article  CAS  PubMed  Google Scholar 

  36. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncogene. 1992;3:91–115.

    CAS  Google Scholar 

  37. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012;14:1295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bettaieb A, Bakke J, Nagata N, Matsuo K, Xi Y, Liu S, et al. Protein tyrosine phosphatase 1B regulates pyruvate kinase M2 tyrosine phosphorylation. J Biol Chem. 2013;288:17360–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kachel P, Trojanowicz B, Sekulla C, Prenzel H, Dralle H, Hoang-Vu C. Phosphorylation of pyruvate kinase M2 and lactate dehydrogenase A by fibroblast growth factor receptor 1 in benign and malignant thyroid tissue. BMC Cancer. 2015;15:1–13.

    Article  CAS  Google Scholar 

  40. Takenaka M, Noguchi T, Sadahiro S, Hirai H, Yamada K, Matsuda T, et al. Isolation and characterization of the human pyruvate kinase M gene. Eur J Biochem. 1991;198:101–6.

    Article  CAS  PubMed  Google Scholar 

  41. Schäfer D, Hamm-Künzelmann B, Brand K. Glucose regulates the promoter activity of aldolase A and pyruvate kinase M2 via dephosphorylation of Sp1. FEBS Lett. 1997;417:325–8.

    Article  PubMed  Google Scholar 

  42. Clower CV, Chatterjee D, Wang Z, Cantley LC, Vander Heiden MG, Krainer AR. The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc Natl Acad Sci U S A. 2010;107:1894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stetak A, Veress R, Ovadi J, Csermely P, Keri G, Ullrich A. Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Can Res. 2007;67:1602–8.

    Article  CAS  Google Scholar 

  44. Tanaka F, Yoshimoto S, Okamura K, Ikebe T, Hashimoto S. Nuclear PKM2 promotes the progression of oral squamous cell carcinoma by inducing EMT and post-translationally repressing TGIF2. Oncotarget. 2018;9:33745–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Zhang S, Liu J, Tian Y, Ma B, Xu S, et al. Secreted pyruvate kinase M2 promotes lung cancer metastasis through activating the integrin beta1/FAK signaling pathway. Cell Rep. 2020;30:1780-1797 e6.

    Article  CAS  PubMed  Google Scholar 

  46. Li TE, Wang S, Shen XT, Zhang Z, Chen M, Wang H, et al. PKM2 drives hepatocellular carcinoma progression by inducing immunosuppressive microenvironment. Front Immunol. 2020;11:589997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 2014;5:4436.

    Article  CAS  PubMed  Google Scholar 

  48. Han D, Choi Y, Ha Y, Park E, Kang E, Song Y, Lee Y. Pyruvate kinase M2 may contribute to the inflammation and joint destruction in rheumatoid arthritis [abstract]. Arthritis Rheumatol. 2019;71(suppl 10).

  49. Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23:753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Han J, Hyun J, Park J, Jung S, Oh Y, Kim Y, et al. Aberrant role of pyruvate kinase M2 in the regulation of gamma-secretase and memory deficits in Alzheimer’s disease. Cell Rep. 2021;37:110102.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang B, Shen J, Zhong Z, Zhang L. PKM2 aggravates cerebral ischemia reperfusion-induced neuroinflammation via TLR4/MyD88/TRAF6 signaling pathway. Neuroimmunomodulation. 2021;28:29–37.

    Article  CAS  PubMed  Google Scholar 

  53. Wang B, Liu S, Fan B, Xu X, Chen Y, Lu R, et al. PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord. J Headache Pain. 2018;19:7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, et al. Pharmacological activation of pyruvate kinase M2 inhibits CD4(+) T cell pathogenicity and suppresses autoimmunity. Cell Metab. 2020;31:391-405 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43:969–80.

    Article  CAS  PubMed  Google Scholar 

  56. Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 1987;262:14366–71.

    Article  CAS  PubMed  Google Scholar 

  57. Harada K, Saheki S, Wada K, Tanaka T. Purification of four pyruvate kinase isozymes of rats by affinity elution chromatography. Biochem Biophys Acta. 1978;524:327–39.

    CAS  PubMed  Google Scholar 

  58. Verma H, Cholia RP, Kaur S, Dhiman M, Mantha AK. A short review on cross-link between pyruvate kinase (PKM2) and glioblastoma multiforme. Metab Brain Dis. 2021;36:751–65.

    Article  CAS  PubMed  Google Scholar 

  59. Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, et al. Pyruvate kinase M2: a simple molecule with complex functions. Free Radical Biol Med. 2019;143:176–92.

    Article  CAS  Google Scholar 

  60. Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, et al. SRSF3, a splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. Int J Mol Sci. 2018;19:3012.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 2005;44:9417–29.

    Article  CAS  PubMed  Google Scholar 

  62. Yang W, Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 2013;339:153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 2008;452:181–6.

    Article  CAS  PubMed  Google Scholar 

  64. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2009;2:ra73.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52:340–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 2011;145:732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334:1278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spoden GA, Morandell D, Ehehalt D, Fiedler M, Jansen-Durr P, Hermann M, et al. The SUMO-E3 ligase PIAS3 targets pyruvate kinase M2. J Cell Biochem. 2009;107:293–302.

    Article  CAS  PubMed  Google Scholar 

  69. Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, et al. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol. 2017;19:1358–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, et al. O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci U S A. 2017;114:13732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hoshino A, Hirst JA, Fujii H. Regulation of cell proliferation by interleukin-3-induced nuclear translocation of pyruvate kinase. J Biol Chem. 2007;282:17706–11.

    Article  CAS  PubMed  Google Scholar 

  72. Wang HJ, Hsieh YJ, Cheng WC, Lin CP, Lin YS, Yang SF, et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci U S A. 2014;111:279–84.

    Article  CAS  PubMed  Google Scholar 

  73. Yang YC, Chien MH, Liu HY, Chang YC, Chen CK, Lee WJ, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett. 2018;421:28–40.

    Article  CAS  PubMed  Google Scholar 

  74. Gao X, Wang H, Yang Jenny J, Liu X, Liu Z-R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 2012;45:598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012;150:685–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res. 2017;27:329–51.

    Article  CAS  PubMed  Google Scholar 

  77. Hou Y, Xu J, Liu X, Xia X, Li N, Bi X. Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway. Pharmacogn Mag. 2015;11:250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shankar Babu M, Mahanta S, Lakhter AJ, Hato T, Paul S, Naidu SR. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS ONE. 2018;13:e0191419.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Keller KE, Tan IS, Lee YS. SAICAR stimulates pyruvate kinase isoform M2 and promotes cancer cell survival in glucose-limited conditions. Science. 2012;338:1069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Park JH, Kundu A, Lee SH, Jiang C, Lee SH, Kim YS, et al. Specific pyruvate kinase M2 inhibitor, compound 3K, induces autophagic cell death through disruption of the glycolysis pathway in ovarian cancer cells. Int J Biol Sci. 2021;17:1895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.

    Article  CAS  PubMed  Google Scholar 

  82. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, et al. Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 2015;21:65–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jiang JK, Walsh MJ, Brimacombe KR, Anastasiou D, Yu Y, Israelsen WJ, et al. ML265: a potent PKM2 activator induces tetramerization and reduces tumor formation and size in a mouse xenograft model. Probe Reports from the NIH Molecular Libraries Program. 2013. National Center for Biotechnology Information (US); 2010.

  84. Anastasiou D, Yu Y, Israelsen WJ, Jiang JK, Boxer MB, Hong BS, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li J, Li S, Guo J, Li Q, Long J, Ma C, et al. Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J Med Chem. 2018;61:4155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kung C, Hixon J, Choe S, Marks K, Gross S, Murphy E, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol. 2012;19:1187–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim DJ, Park YS, Kim ND, Min SH, You YM, Jung Y, et al. A novel pyruvate kinase M2 activator compound that suppresses lung cancer cell viability under hypoxia. Mol Cells. 2015;38:373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang Q, Liu Q, Zheng S, Liu T, Yang L, Han X, et al. Shikonin inhibits tumor growth of ESCC by suppressing PKM2 mediated aerobic glycolysis and STAT3 phosphorylation. J Cancer. 2021;12:4830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qi H, Ning X, Yu C, Ji X, Jin Y, McNutt MA, et al. Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Differ. 2019;10:170.

    Article  Google Scholar 

  90. Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010;79:1118–24.

    Article  CAS  PubMed  Google Scholar 

  91. Hsieh IS, Gopula B, Chou CC, Wu HY, Chang GD, Wu WJ, et al. Development of novel irreversible pyruvate kinase M2 inhibitors. J Med Chem. 2019;62:8497–510.

    Article  CAS  PubMed  Google Scholar 

  92. Rihan M, Vineela Nalla L, Dharavath A, Patel S, Shard A, Khairnar A. Boronic acid derivative activates pyruvate kinase M2 indispensable for redox metabolism in oral cancer cells. Bioorg Med Chem Lett. 2022;59:128539.

    Article  CAS  PubMed  Google Scholar 

  93. Wubben TJ, Rech JC, Pawar MD, Weh E, Besirli CG. Development of novel pyruvate kinase muscle isoform 2 (PKM2) activators for photoreceptor neuroprotection. Invest Ophthalmol Vis Sci. 2020;61:4938–4938.

    Google Scholar 

  94. Jiang JK, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 2010;20:3387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ning X, Qi H, Li R, Li Y, Jin Y, McNutt MA, et al. Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase. Eur J Med Chem. 2017;138:343–52.

    Article  CAS  PubMed  Google Scholar 

  96. Williams AL, Wang L, Lee K, Avelar A, Xie G, Jia W, et al. Abstract 13620: loss of PKM2 alters myocardial glucose levels before and after infarction. Circulation. 2019;140:A13620–A13620.

    Google Scholar 

  97. Carrillo MAL, Gopal K, Byrne NJ, Saleme B, Das SK, Tejay S, et al. Abstract 9054: cell-specific regulation of the GATA-4/6 transcription factors by the metabolic enzyme PKM2 provides insight into a biologic function essential for cardiac health and survival. Circulation. 2021;144:A9054–A9054.

    Google Scholar 

  98. Novoyatleva T, Rai N, Weissmann N, Grimminger F, Ghofrani HA, Seeger W, et al. Is PKM2 phosphorylation a prerequisite for oligomer disassembly in pulmonary arterial hypertension? Am J Respir Crit Care Med. 2019;200:1550–4.

    Article  CAS  PubMed  Google Scholar 

  99. Kim B, Jang C, Dharaneeswaran H, Li J, Bhide M, Yang S, et al. Endothelial pyruvate kinase M2 maintains vascular integrity. J Clin Investig. 2018;128:4543–56.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Li L, Liu Y, Liu ZR. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis. Wound Repair and Regen. 2016;24:328–36.

    Article  CAS  Google Scholar 

  101. Gómez-Escudero J, Clemente C, García-Weber D, Acín-Pérez R, Millán J, Enríquez JA, et al. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep. 2019;9:1–18.

    Article  Google Scholar 

  102. Siragusa M, Thöle J, Bibli SI, Luck B, Loot AE, de Silva K, et al. Nitric oxide maintains endothelial redox homeostasis through PKM 2 inhibition. EMBO J. 2019;38:e100938.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jain M, Dhanesha N, Doddapattar P, Nayak MK, Guo L, Cornelissen A, et al. Smooth muscle cell-specific PKM2 (pyruvate kinase muscle 2) promotes smooth muscle cell phenotypic switching and neointimal hyperplasia. Arterioscler Thromb Vasc Biol. 2021;41:1724–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with preserved ejection fraction and diastolic dysfunction in obese and non-obese hypertensive mice. J Mol Cell Cardiol. 2018;123:46–57.

    Article  CAS  PubMed  Google Scholar 

  105. Ding Y, Xue Q, Liu S, Hu K, Wang D, Wang T, et al. Identification of parthenolide dimers as activators of pyruvate kinase M2 in xenografts of glioblastoma multiforme in vivo. J Med Chem. 2020;63:1597–611.

    Article  CAS  PubMed  Google Scholar 

  106. Ni L, Lin B, Hu L, Zhang R, Fu F, Shen M, et al. Pyruvate kinase M2 protects heart from pressure overload-induced heart failure by phosphorylating RAC1. J Am Heart Assoc. 2022;11:e024854.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cheng Y, Feng Y, Xia Z, Li X, Rong J. ω-Alkynyl arachidonic acid promotes anti-inflammatory macrophage M2 polarization against acute myocardial infarction via regulating the cross-talk between PKM2, HIF-1α and iNOS. Biochim Biophys Acta. 2017;1862:1595–605.

    Article  CAS  Google Scholar 

  108. Al-Samkari H, van Beers EJ. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias. Ther Adv Hematol. 2021;12:20406207211066070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shimauchi T, Wu W, Grobs Y, Omura J, Tremblay E, Martineau S, et al. Abstract 10231: PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension. Circulation. 2021;144:A10231–A10231.

    Article  Google Scholar 

  110. Alves-Filho JC, Palsson-McDermott EM. Pyruvate kinase M2: a potential target for regulating inflammation. Front Immunol. 2016;7:145.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhang H, Wang D, Li M, Plecita-Hlavata L, D’Alessandro A, Tauber J, et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation. 2017;136:2468–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, et al. Identification of microRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation. 2017;136:2451–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bhedi CD, Nasirova S, Toksoz D, Warburton RR, Morine KJ, Kapur NK, et al. Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. FASEB J. 2020;34:930–44.

    Article  CAS  PubMed  Google Scholar 

  114. Guo D, Gu J, Jiang H, Ahmed A, Zhang Z, Gu Y. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to the development of pulmonary arterial hypertension. J Mol Cell Cardiol. 2016;91:179–87.

    Article  CAS  PubMed  Google Scholar 

  115. Shimauchi T, Omura J, Bonnet SB, Nadeau V, Tremblay E, Grobs Y, et al. Abstract 13700: role of PARP1-PKM2 axis in the pathogenesis of right ventricular failure associated with pulmonary arterial hypertension. Circulation. 2020;142:A13700–A13700.

    Article  Google Scholar 

  116. Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 2018;96:585–600.

    Article  CAS  PubMed  Google Scholar 

  117. Lu SL, Dang GH, Deng JC, Liu HY, Liu B, Yang J, et al. Shikonin attenuates hyperhomocysteinemia-induced CD4(+) T cell inflammatory activation and atherosclerosis in ApoE(−/−) mice by metabolic suppression. Acta Pharmacol Sin. 2020;41:47–55.

    Article  CAS  PubMed  Google Scholar 

  118. Zhao X, Tan F, Cao X, Cao Z, Li B, Shen Z, et al. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis. Acta Biochim Biophys Sin. 2019;52:9–17.

    Article  Google Scholar 

  119. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–18.

    Article  PubMed  Google Scholar 

  120. Liu Y, Bai F, Liu N, Ouyang F, Liu Q. The Warburg effect: a new insight into atrial fibrillation. Clin Chim Acta. 2019;499:4–12.

    Article  CAS  PubMed  Google Scholar 

  121. Nayak MK, Ghatge M, Flora GD, Dhanesha N, Jain M, Markan KR, et al. The metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood. 2021;137:1658–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Dang G, Li T, Yang D, Yang G, Du X, Yang J, et al. T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2. Redox Biol. 2022;50:102257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gao J, Wang T, Wang C, Wang S, Wang W, Ma D, et al. Effects of Tianshu capsule on spontaneously hypertensive rats as revealed by (1)H-NMR-based metabolic profiling. Front Pharmacol. 2019;10:989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang X, Zheng C, Gao Z, Wang L, Chen C, Zheng Y, et al. PKM2 promotes angiotensin-II-induced cardiac remodelling by activating TGF-beta/Smad2/3 and Jak2/Stat3 pathways through oxidative stress. J Cell Mol Med. 2021;25:10711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Inamdar AA, Inamdar AC. Heart failure: diagnosis, management and utilization. J Clin Med. 2016;5:62.

    Article  PubMed  PubMed Central  Google Scholar 

  126. McNally LA, Mehra P, Gibb A, Brittian K, Gumpert A, Dassanayaka S, et al. Abstract 14268: PKM2 to PKM1 isoform switching in fibroblasts attenuates cardiac dysfunction in infarcted mice. Circulation. 2021;144:A14268–A14268.

    Google Scholar 

  127. Maron BA, Galiè N. Diagnosis, treatment, and clinical management of pulmonary arterial hypertension in the contemporary era: a review. JAMA Cardiol. 2016;1:1056–65.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Xiong PY, Tian L, Dunham-Snary KJ, Chen K-H, Mewburn JD, Neuber-Hess M, et al. Biventricular increases in mitochondrial fission mediator (MiD51) and proglycolytic pyruvate kinase (PKM2) isoform in experimental group 2 pulmonary hypertension-novel mitochondrial abnormalities. Front Cardiovasc Med. 2019;5:195.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shimauchi T, Omura J, Bonnet SB, Paulin R, Provencher S, Boucherat O, et al. Abstract 12208: role of PKM2 and oxidative DNA damage in the pathogenesis of right ventricular failure associated with pulmonary arterial hypertension. Circulation. 2019;140:A12208–A12208.

    Google Scholar 

  130. Liu X, Shen J, Zhan R, Wang X, Wang X, Zhang Z, et al. Proteomic analysis of homocysteine induced proliferation of cultured neonatal rat vascular smooth muscle cells. Biochem Biophys Acta. 2009;1794:177–84.

    CAS  PubMed  Google Scholar 

  131. Deng J, Lu S, Liu H, Liu B, Jiang C, Xu Q, et al. Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol. 2017;198:170–83.

    Article  CAS  PubMed  Google Scholar 

  132. Le S, Zhang H, Huang X, Chen S, Wu J, Chen S, et al. PKM2 activator TEPP-46 attenuates thoracic aortic aneurysm and dissection by inhibiting NLRP3 inflammasome-mediated IL-1β secretion. J Cardiovasc Pharmacol Ther. 2020;25:364–76.

    Article  CAS  PubMed  Google Scholar 

  133. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213:337–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kumar A, Gupta P, Rana M, Chandra T, Dikshit M, Barthwal MK. Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J Lipid Res. 2020;61:351–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Oklu R. Thrombosis. Cardiovasc Diagn Ther. 2017;7:S131–3.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nayak M, Dhanesha N, Jain M, Chauhan A. Manipulating metabolic plasticity by targeting pyruvate kinase M2 in platelets inhibits arterial thrombosis. Blood. 2018;132:868–868.

    Article  Google Scholar 

  137. Nayak MK, Ghatge M, Dhanesha N, Flora GD, Jain M, Rodriguez O, et al. Targeting metabolic enzyme pyruvate kinase M2: a novel strategy to inhibit platelet function and arterial thrombosis. Blood. 2019;134:1056–1056.

    Article  Google Scholar 

  138. Davis FM, Daugherty A, Lu HS. Updates of recent aortic aneurysm research. Arterioscler Thromb Vasc Biol. 2019;39:e83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li Q, Li C, Elnwasany A, Sharma G, An YA, Zhang G, et al. PKM1 exerts critical roles in cardiac remodeling under pressure overload in the heart. Circulation. 2021;144:712–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, et al. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res. 2021;118:37–52.

    Article  Google Scholar 

  141. Warburg O. The metabolism of carcinoma cells. J Cancer Res. 1925;9:148–63.

    Article  CAS  Google Scholar 

  142. Davogustto G, Dillon W, Salazar R, Vasquez H, Taegtmeyer H. The Warburg effect in the heart: increased glucose metabolism drives cardiomyocyte hypertrophy in response to adrenergic stimulation. J Am Coll Cardiol. 2018;71:A802–A802.

    Article  Google Scholar 

  143. Baz-Lopez D, Bruno VD, Johnson TW, Ascione R, Sammut E. Distinct metabolic transcriptional patterns and Warburg effect in porcine model of ischaemic cardiomyopathy. Eur Heart J. 2021;42.ehab724.3220.

  144. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  CAS  PubMed  Google Scholar 

  145. Jin X, Zhang W, Wang Y, Liu J, Hao F, Li Y, et al. Pyruvate kinase M2 promotes the activation of dendritic cells by enhancing IL-12p35 expression. Cell Rep. 2020;31:107690.

    Article  CAS  PubMed  Google Scholar 

  146. Walls JF, Subleski JJ, Palmieri EM, Gonzalez-Cotto M, Gardiner CM, McVicar DW, et al. Metabolic but not transcriptional regulation by PKM2 is important for natural killer cell responses. eLife. 2020;9:e59166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, et al. PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension. JACC Basic Transl Sci. 2022;7:384–403.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lu S, Deng J, Liu H, Liu B, Yang J, Miao Y, et al. PKM2-dependent metabolic reprogramming in CD4(+) T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med. 2018;96:585–600.

    Article  CAS  PubMed  Google Scholar 

  149. Watanabe R, Shirai T, Namkoong H, Zhang H, Berry GJ, Wallis BB, et al. Pyruvate controls the checkpoint inhibitor PD-L1 and suppresses T cell immunity. J Clin Investig. 2017;127:2725–38.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Sakeel, Nishit, and Ashish for assisting/reading for improvement.

Funding

Support was provided by the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India to NIPER SAS Nagar.

Author information

Authors and Affiliations

Authors

Contributions

M. R. and S. S. S. conceived the idea of the manuscript. M. R. wrote all the sections. S. S. S. corrected the manuscript and all authors approved the final proof for submission.

Corresponding author

Correspondence to Shyam Sunder Sharma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rihan, M., Sharma, S.S. Role of Pyruvate Kinase M2 (PKM2) in Cardiovascular Diseases. J. of Cardiovasc. Trans. Res. 16, 382–402 (2023). https://doi.org/10.1007/s12265-022-10321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10321-1

Keywords

Navigation