Skip to main content
Log in

Ultrastructural and physiological changes induced by different stress conditions on the human parasite Trypanosoma cruzi

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Trypanosoma cruzi is the etiological agent of Chagas disease. The life cycle of this protozoan parasite is digenetic because it alternates its different developmental forms through two hosts, a vector insect and a vertebrate host. As a result, the parasites are exposed to sudden and drastic environmental changes causing cellular stress. The stress response to some types of stress has been studied in T. cruzi, mainly at the molecular level; however, data about ultrastructure and physiological state of the cells in stress conditions are scarce or null. In this work, we analyzed the morphological, ultrastructural, and physiological changes produced on T. cruzi epimastigotes when they were exposed to acid, nutritional, heat, and oxidative stress. Clear morphological changes were observed, but the physiological conditions varied depending on the type of stress. The maintenance of the physiological state was severely affected by heat shock, acidic, nutritional, and oxidative stress. According to the surprising observed growth recovery after damage by stress alterations, different adaptations from the parasite to these harsh conditions were suggested. Particular cellular death pathways are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez EV, Kosec G, SantÁnna C, Turk V, Cazzulo JJ, Turk B (2008) Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J Biol Chem 283:3454–3464

    Article  CAS  PubMed  Google Scholar 

  • Batista DG, Pacheco MG, Kumar A, Branowska D, Ismail MA, Hu L, Boykin DW, Soeiro MN (2010) Biological, ultrastructural effect and subcellular localization of aromatic diamidines in Trypanosoma cruzi. Parasitology 137:251–259

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Singh S, Nagaraj R, Vaidya T (2003) Induction of autophagic cell death in Leishmania donovani by antimicrobial peptides. Mol Biochem Parasitol 127:23–35

    Article  CAS  PubMed  Google Scholar 

  • Carnieri EG, Moreno SN, Docampo R (1993) Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol 61:79–86

    Article  CAS  PubMed  Google Scholar 

  • Cassola A, De Gaudenzi JG, Frasch AC (2007) Recruitment of mRNAs to cytoplasmic ribonucleoprotein granules in trypanosomes. Mol Microbiol 65:655–670

    Article  CAS  PubMed  Google Scholar 

  • Castillo JL, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27:537–547

    Article  CAS  PubMed  Google Scholar 

  • Chiari E, Camargo EP (1984) Culturing and cloning of Trypanosoma cruzi. In: Morel M (ed) Genes and Antigens of Parasite. Institute Oswaldo Cruz, Río de Janeiro, Brazil

    Google Scholar 

  • Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327

    Article  CAS  PubMed  Google Scholar 

  • Cyrino LT, Araújo AP, Joazeiro PP, Vicente CP, Giorgio S (2012) In vivo and in vitro Leishmania amazonensis infection induces autophagy in macrophages. Tissue Cell 44:401–408

    Article  CAS  PubMed  Google Scholar 

  • Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469

    CAS  PubMed  Google Scholar 

  • de Souza W, Sant'Anna C, Cunha-e-Silva NL (2009) Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. Prog Histochem Cytochem 44(2):67--124. doi:10.1016/j.proghi.2009.01.001. Epub 2009 Apr 5

  • Dost CK, Saraiva J, Monesi N, Zentgraf U, Engels W, Albuquerque S (2004) Six Trypanosoma cruzi strains characterized by specific gene expression patterns. Parasitol Res 94:134–140

    CAS  PubMed  Google Scholar 

  • Espinoza B, Rico T, Sosa S, Oaxaca E, Vizcano-Castillo A, Caballero ML, Martínez I (2010) Mexican Trypanosoma cruzi TCI strains with different virulence induce diverse humoral and cellular immune response in murine experimental infection. J Biomed Biotech. doi:10.1155/2010/890672

    Google Scholar 

  • Finzi JK, Chiavegatto CWM, Corat KF, López JA, Cabrera OG, Mielniczki-Pereia AA, Colli W, Alves MJM, Gadelha FR (2004) Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol Biochem Parasitol 133:37–43

    Article  CAS  PubMed  Google Scholar 

  • Fozo EM, Quivey RG Jr (2004) Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grela E, Ząbek A, Grabowiecka A (2015) Interferences in the Optimization of the MTT Assay for Viability Estimation of Proteus mirabilis. Avicenna J Med Biotechnol 7:159–167

    PubMed  PubMed Central  Google Scholar 

  • Hall BF (1993) Trypanosoma cruzi: mechanisms for entry into host cells. Sem Cell Biol 4:323–333

    Article  CAS  Google Scholar 

  • Jiménez-García LF, Segura-Valdéz ML (2004) Visualizing nuclear structure in situ by atomic force microscopy. Meth Mol Biol 242:191–199

    Google Scholar 

  • Kollien A, Schaub GA (1998) Trypanosoma cruzi in the rectum of the bug Triatoma infestans: effects of blood ingestion by the starved vector. Am J Trop Med Hyg 59:166–170

    CAS  PubMed  Google Scholar 

  • Kollien AH, Grospietsch T, Kleffmann T, Zerbst-Boroffka I, Schaub GA (2001) Ionic composition of the rectal contents and excreta of the reduviid bug Triatoma infestans. J Insec Physiol 47:739–747

    Article  CAS  Google Scholar 

  • Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, Dias Filho BP, Nakamura CV, Silva SO (2013) Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Rad Biol Med 60:17–28

    Article  PubMed  Google Scholar 

  • Lazarin-Bidóia D, Desoti VC, Martins SC, Ribeiro FM, Ud Din Z, Rodrigues-Filho E, Ueda-Nakamura T, Nakamura CV, de Oliveira Silva S (2016) Dibenzylideneacetones are potent trypanocidal compounds that affect the Trypanosoma cruzi redox system. Antimicrob Agents Chemother 60:890–903

    Article  PubMed  PubMed Central  Google Scholar 

  • Machado-Silva A, Cerqueira PG, Graziell-Silva V, Gadelha FR, Peloso-Ede F, Teixeira SM, Machado CR (2016) How Trypanosoma cruzi deals with oxidative stress: antioxidant defense and DNA repair patways. Mutat Res Rev Mutat Res 767:8–22

    Article  CAS  PubMed  Google Scholar 

  • Martins RM, Covarrubias C, Rojas RG, Silber AM, Yoshida N (2009) Use of L-proline and ATP production by Trypanosoma cruzi metacyclic forms as requirements for host cell invasion. Infec Imm 77:3023–3032

    Article  CAS  Google Scholar 

  • Matthews KR (2011) Controlling and coordinating development in vector-transmitted parasites. Science 331:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Mayorga-Reyes L, Bustamante-Camilo P, Gutiérrez-Nava A, Barranco-Florido E, Azaola-Espinosa A (2009) Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas. Revista Mexicana de Ingeniería Química 8:259–264

    CAS  Google Scholar 

  • Menna-Barreto RF, Corrêa JR, Cascabulho CM, Fernandes MC, Pinto AV, Soares MJ, De Castro SL (2009a) Naphthoimidazoles promote different death phenotypes in Trypanosoma cruzi. Parasitology 136:499–510

    Article  CAS  PubMed  Google Scholar 

  • Menna-Barreto RF, Salomão K, Dantas AP, Santa-Rita RM, Soares MJ, Barbosa HS, de Castro SL (2009b) Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 40:157–168

    Article  CAS  PubMed  Google Scholar 

  • Mielniczki-Pereira AA, Chiavegatto CM, López JA, Colli W, Alves MJ, Gadelha FR (2007) Trypanosoma cruzi strains, Tulahuen 2 and Y, besides the difference in resistance to oxidative stress, display differential glucose-6-phosphate and 6-phosphogluconate dehydrogenases activities. Acta Trop 101:54–60

    Article  CAS  PubMed  Google Scholar 

  • Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, Sandri M, Burelle Y, Hussain SN (2012) Autophagy and skeletal muscles in sepsis. PLoS One 7:e47265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA (1996) Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 167:305–313

    Article  CAS  PubMed  Google Scholar 

  • Názer E, Verdún RE, Sánchez DO (2012) Severe heat shock induces nucleolar accumulation of mRNAs in Trypanosoma cruzi. PLoS One 7:e43715

    Article  PubMed  PubMed Central  Google Scholar 

  • Nogueira NP, Saraiva FMS, Sultano PE, Cunha PRBB, Laranja GAT, Justo GA, Sabino KCC, Coelho MGP, Rossini A, Atella GC, Paes MC (2015) Proliferation and differentiation of Trypanosoma cruzi inside its vector have a new trigger: redox status. Plos One. doi:10.1371/journal.pone.0116712

    Google Scholar 

  • Nolan DP, Rolin S, Rodriguez JR, Van Den Abbeele J, Pays E (2000) Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress. Eur J Biochem 267:18–27

    Article  CAS  PubMed  Google Scholar 

  • Olson CL, Nadeau KC, Sullivan MA, Winquist AG, Donelson JE, Walsh CT, Engmann DM (1994) Molecular and biochemical comparison of the 70-kDa heat shock proteins of Trypanosoma cruzi. J Biol Chem 269:3868–3874

    CAS  PubMed  Google Scholar 

  • Pérez-Morales D, Ostoa-Saloma P, Espinoza B (2009) Trypanosoma cruzi SHSP16: characterization of an α-crystallin small heat shock protein. Exp Parasitol 123:182–189

    Article  PubMed  Google Scholar 

  • Piacenza L, Alvarez MN, Peluffo G, Radi R (2009) Fighting the oxidative assault: the Trypanosoma cruzi journey to infection. Curr Opinion Microbiol 12:415–421

    Article  CAS  Google Scholar 

  • Piacenza L, Peluffo G, Alvárez MN, Martínez A, Radi R (2013) Trypanosoma cruzi antioxidant enzymes as virulent factors in Chagas Disease. Antox Redox Signal 19:723–734

    Article  CAS  Google Scholar 

  • Raff M (1998) Cell suicide for beginners. Nature 396:119–122

    Article  CAS  PubMed  Google Scholar 

  • Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Euk Cell 1:11–21

    Article  CAS  Google Scholar 

  • Requena JM, Jimenez-Ruiz A, Soto M, Assiego R, Santarén JF, López MC, Patarroyo ME, Alonso C (1992) Regulation of hsp70 expression in Trypanosoma cruzi by temperature and growth phase. Mol Biochem Parasitol 53:201–212

    Article  CAS  PubMed  Google Scholar 

  • Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandes JM, Fontes A, Regis-da-Silva CG, de Castro MCAB, Lima-Junior CG, Silva FPL et al (2014) Trypanosoma cruzi cell death induced by the Morita-Baylis-Hillman adduct 3-Hydroxy-2-Methylene-3-(4-Nitrophenylpropanenitrile). PLoS One 9(4):e93936

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos AO, Santin AC, Yamaguchi MU, Cortez LE, Ueda-Nakamura T, Dias-Filho BP, Nakamura CV (2010) Antileishmanial activity of an essential oil from the leaves and flowers of Achillea millefolium. Ann Trop Med Parasitol 104:475–483

    Article  CAS  PubMed  Google Scholar 

  • Souquere S, Mollet S, Kress M, Dautry F, Pierron G, Weil D (2009) Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J Cell Sci 122:3619–3626

    Article  CAS  PubMed  Google Scholar 

  • Thammavongs B, Denou E, Missous G, Guéguen M, Panoff JM (2008) Response to environmental stress as a global phenomenon in biology: the example of microorganisms. Micro Environ 23:20–23

    Article  Google Scholar 

  • Vassar Stats: Statistical computational Web site. http://vassarstats.net/

  • Veiga-Santos P, Barrias ES, Santos JF, de Barros Moreira TL, de Carvalho TM, Urbina JA, de Souza W (2012) Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Inter. J. Antimicrobial Agents 40:61–71

    Article  CAS  Google Scholar 

  • Vieira LL (1998) pH and volume homeostasis in trypanosomatids: current views and perspectives. Biochim Biophys Acta 1376:221–224

    Article  CAS  PubMed  Google Scholar 

  • Volpato H, Desoti VC, Valdez RH, Ueda-Nakamura T, Silva SO, Sarragiotto MH et al (2015) Mitochondrial Dysfunction Induced by N-Butyl-1-(4-Dimethylamino) Phenyl-1, 2,3,4-Tetrahydro-β-Carboline-3-Carboxamide Is Required for Cell Death of Trypanosoma cruzi. PLoS One 10(6):e0130652. doi:10.1371/journal.pone.0130652

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster DL, Watson K (1993) Ultrastructural changes in yeast following heat shock and recovery. Yeast 9:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3050–3060

    Article  Google Scholar 

  • WHO (2015) Chagas disease. (http://www.who.int/mediacentre/factsheets/fs340/en/). Accessed on September 4th, 2015.

  • Wilkinson SR, Taylor MC, Touitha S, Mauricio IL, Meyer D, Kelly J (2002) TcGPXII a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides is localized to the endoplasmic reticulum. Biochem J 364:787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie AH, Kerr JFK, Currie AR (1980) Cell death. The significance of apoptosis. Inf Rev Cytol 68:251–306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DGAPA, UNAM, grant number IN206512. PMD received a scholarship from CONACYT during her PhD studies. We thank Dr. Ruben Arroyo-Olarte for his valuable comments and the help in the English review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertha Espinoza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 124858 kb)

(MP4 73189 kb)

(MP4 129922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Morales, D., Hernández, K.D.R., Martínez, I. et al. Ultrastructural and physiological changes induced by different stress conditions on the human parasite Trypanosoma cruzi . Cell Stress and Chaperones 22, 15–27 (2017). https://doi.org/10.1007/s12192-016-0736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0736-y

Keywords

Navigation