Skip to main content
Log in

A molecular electron density theory study to understand the interplay of theory and experiment in nitrone-enone cycloaddition

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

[3 + 2] cycloaddition (32CA) reaction of C,N-diaryl nitrone with benzylidene acetone has been studied to analyse the mechanism, selectivity and polar character of this nitrone-enone cycloaddition. Topological analysis of the electron localization function (ELF) shows the absence of pseudoradical and carbenoid centre in the nitrone, which allows its classification as a zwitter-ionic (zw) type three atom component (TAC) and hence participation in zw- type cycloadditions is associated with high activation energy barriers. This 32CA reaction follows a one-step mechanism with asynchronous TSs. Endo/meta product is obtained as the major cycloadduct experimentally, which can be rationalized from its calculated lowest activation energy among the four possible reaction pathways. Global electron density transfer (GEDT) at the TSs predict the non-polar character of this 32CA reaction. Topological analysis of the ELF and QTAIM parameters was performed at the TSs. Finally, non-covalent interaction (NCI) gradient isosurfaces are computed to obtain a visualization of non-covalent interactions at the interatomic bonding regions.

Graphic Abstract

The experimental and theoretical aspects of [3+2] cycloaddition reactions of C,N-diaryl nitrone with benzylidene acetone is described. The reaction is meta/endo selective and follows one step mechanism with non-covalent interactions. The C-C and C-O bonds are generated through coupling of pseudoradical centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Scheme 3
Scheme 4
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Grigor’ev I A 2007 In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis H Feuer (Ed.) (Wiley: Hoboken, New Jersey) p. 129

  2. Jones R C F and Martin J N 2002 In Synthetic Application of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products A Padwa and W H Pearson (Eds.) (Wiley: New York) p.1

  3. Chiacchio M A, Giofrè S V, Romeo R, Romeo G and Chiacchio U 2016 Isoxazolidines as Biologically Active Compounds Curr. Org. Syn. 13 726

    Article  CAS  Google Scholar 

  4. Romeo G, Chiacchio U, Corsaro A and Merino P 2010 Chemical Synthesis of Heterocyclic-Sugar Nucleoside Analogues Chem. Rev. 110 3337

    CAS  Google Scholar 

  5. Gothelf K V and Jørgensen K A 1998 Asymmetric 1,3-Dipolar Cycloaddition Reactions Chem. Rev. 98 863

    CAS  Google Scholar 

  6. Zhang Q Y Z, Jia Z, Yang C, Zhang L and Luo S 2019 Asymmetric 1,3-Dipolar Cycloaddition Reactions of Enones by Primary Amine Catalysis Asian J. Org. Chem. 8 1049

    Google Scholar 

  7. Fukui K, Yonezawa T and Shingu H 1952 A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons J. Chem. Phys. 20 722

    Article  CAS  Google Scholar 

  8. Domingo L R 2016 Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry Molecules 21 1319

    Article  Google Scholar 

  9. Gutiérrez M R and Domingo L R 2019 Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions Eur. Jour. Org. Chem. 267

    Google Scholar 

  10. Domingo L R, Gutiérrez M R- and Pérez P 2017 How does the global electron density transfer diminish activation energies in polar cycloaddition reactions? A Molecular Electron Density Theory study Tetrahedron 73 1718

  11. Domingo L R 2014 A new C–C bond formation model based on the quantum chemical topology of electron density RSC Adv. 4 32415

    CAS  Google Scholar 

  12. Domingo L R, Gutiérrez M R- and Pérez P 2018 A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3 + 2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives J. Org. Chem. 83 2182

  13. Becke A D and Edgecombe K E 1990 A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 92 5397

    Article  CAS  Google Scholar 

  14. Silvi B and Savin A 1994 Classification of chemical bonds based on topological analysis of electron localization functions Nature 371 683

    Article  CAS  Google Scholar 

  15. Domingo L R, Gutiérrez M R and Pérez P 2016 Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity Molecules 21 748

    Article  Google Scholar 

  16. Bader R F W 1990 Atoms in Molecules: A Quantum Theory (Oxford: Clarendon Press)

    Google Scholar 

  17. Kumar P S V, Raghavendra V and Subramanian V 2016 Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding J. Chem. Sci. 128 1527

    Article  CAS  Google Scholar 

  18. Bader R F W and Essén H 1984 The characterization of atomic interactions J. Chem. Phys. 80 1943

    Article  CAS  Google Scholar 

  19. García J C-, Johnson E R, Keinan S, Chaudret R, Piquemal J -P, Beratan D N and Yang W 2011 NCIPLOT: A Program for Plotting Noncovalent Interaction Regions J. Chem. Theory Comput. 73 625

  20. Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098

    Article  CAS  Google Scholar 

  21. Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  22. Domingo L R, Aurell M J and Pérez P 2015 A mechanistic study of the participation of azomethine ylides and carbonyl ylides in [3 + 2] cycloaddition reactions Tetrahedron 71 1050

  23. Jasiński R 2015 In the searching for zwitter ionic intermediates on reaction paths of [3 + 2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins RSC Adv. 5 101045

  24. Kącka- Zych A, Domingo L R, Gutiérrez M R and Jasiński R 2017 Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory Theor. Chem. Acc. 136 129

    Article  Google Scholar 

  25. González C and Schlegel H B 1990 Reaction path following in mass-weighted internal coordinates J. Phys. Chem. 94 5523

    Article  Google Scholar 

  26. González C and Schlegel H B 1991 Improved algorithms for reaction path following: Higher-order implicit algorithms J. Chem. Phys. 95 5853

    Article  Google Scholar 

  27. Tomasi J and Persico M 1994 Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent Chem. Rev. 94 2027

    CAS  Google Scholar 

  28. Simkin B I A and Sheikhet I I 1995 Quantum chemical and statistical theory of solutions—Computational approach (London, UK: Ellis Horwood)

  29. Cossi M, Barone V, Cammi R and Tomasi J 1996 Ab initio study of solvated molecules: a new implementation of the polarizable continuum model Chem. Phys. Lett. 255 327

    CAS  Google Scholar 

  30. Barone V, Cossi M and Tomasi J 1998 Geometry optimization of molecular structures in solution by the polarizable continuum model J. Comput. Chem. 19 404

    Article  CAS  Google Scholar 

  31. Reed A E, Weinstock R B and Weinhold F 1985 Natural Population Analysis J. Chem. Phys. 83 735

    Article  CAS  Google Scholar 

  32. Reed A E, Curtiss L A and Weinhold F 1988 Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint Chem. Rev. 88 899

    CAS  Google Scholar 

  33. Geerlings P, De Proft F and Langenaeker W 2003 Conceptual Density Functional Theory Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  34. Domingo L R, Aurell M J, Perez P and Contreras R 2002 Quantitative Characterization of the Global Electrophilicity Power of Common Diene/Dienophile Pairs in Diels-Alder Reactions Tetrahedron 58 4417

    Article  CAS  Google Scholar 

  35. Gaussian 03, Revision D.01, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr JA, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A, Gaussian, Inc, Wallingford CT, 2004

  36. Lu T and Chen F 2012 Multiwfn: A multifunctional wavefunction analyzer J. Comp. Chem. 33 580

    Article  Google Scholar 

  37. Humphrey W, Dalke A and Schulten K 1996 VMD: visual molecular dynamics J. Mol. Graphics. 14.1 33

    Article  CAS  Google Scholar 

  38. Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C and Ferrin T E 2004 UCSF Chimera–a visualization system for exploratory research and analysis J. Comput. Chem. 25 1605

    Article  CAS  Google Scholar 

  39. Drake N L and Allen P Jr. 1923 Benzalacetone Org. Synth. 3 17

    Article  Google Scholar 

  40. Acharjee N, Banerji A and Prangé T 2010 DFT study of 1,3-dipolar cycloadditions of C,N-disubstituted aldonitrones to chalcones evidenced by NMR and X-ray analysis Monatsh. Chem. 141 1213

    CAS  Google Scholar 

  41. Banerji A, Maiti K K, Haldar S, Mukhopadhyay C, Banerji J, Prange´ T and Neuman A 2000 1,3-Dipolar Cycloadditions VI [1].Structure and Conformation of Cycloadducts from Reactions of C-Aryl-N-phenyl nitrones with Substituted Cinnamic Acid Amides Monatsh. Chem. 131 901

  42. Yang W and Mortier W J 1986 The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines J. Am. Chem. Soc. 108 5708

    Article  CAS  Google Scholar 

  43. Domingo L R, Pérez P and Sáez J A 2013 Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions RSC Adv. 3 1486

    CAS  Google Scholar 

  44. Domingo L R and Acharjee N 2018 [3 + 2] Cycloaddition Reaction of C-Phenyl-N-methyl Nitrone to Acyclic-Olefin-Bearing Electron-Donating Substituent: A Molecular Electron Density Theory Study Chem. Select 3 8373

    CAS  Google Scholar 

  45. Acharjee N and Banerji A 2011 DFT interpretation of 1,3-dipolar cycloaddition reaction of C,N-diphenyl nitrone to methyl crotonate in terms of reactivity indices, interaction energy and activation parameters Comput. Theo. Chem. 967 50

    Article  CAS  Google Scholar 

  46. Jasiński R, Wąsik K, Mikulskaa M and Barański A 2009 A DFT study on the (2  +  3) cycloaddition reactions of 2-nitropropene-1 with Z-C, N-diarylnitrones J. Phys. Org. Chem. 22 717

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors N. Acharjee, is thankful to Professor Manas Banerjee (Retired), University of Burdwan, West Bengal, India for kind cooperation and University of Calcutta for experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NIVEDITA ACHARJEE.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ACHARJEE, N., BANERJI, A. A molecular electron density theory study to understand the interplay of theory and experiment in nitrone-enone cycloaddition. J Chem Sci 132, 65 (2020). https://doi.org/10.1007/s12039-020-01766-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01766-5

Keywords

Navigation