Skip to main content
Log in

Role of Lanthanide-Ligand bonding in the magnetization relaxation of mononuclear single-ion magnets: A case study on Pyrazole and Carbene ligated LnIII(Ln=Tb, Dy, Ho, Er) complexes

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Ab initio CASSCF + RASSI-SO + SINGLE_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic M(BcMe)3 (M = Tb(1), Dy(2), Ho(3), Er(4), [BcMe]= dihydrobis(methylimidazolyl)borate) and M(BpMe)3 (M = Tb(1a), Dy(2a), Ho(3a), Er(4a) [BpMe]= dihydrobis(methypyrazolyl)borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm−1, respectively and this is in accordance with experiment. Experimentally only frequency dependent χ” tails are observed for complex 1a and our calculation predicts a large Ucalof 229.4 cm−1 for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln...H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied.

Calculations were carried out on a series on Ln(BcMe)3 and Ln(BpMe)3 (Ln = Tb, Dy, Ho, Er) complexes to ascertain the anisotropic variations of two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wang H, Wang B -W, Bian Y, Gao S and Jiang J 2016 Coord. Chem. Rev. 306 195

    Article  CAS  Google Scholar 

  2. Liddle S T and van Slageren J 2015 Chem. Soc. Rev. 44 6655

    Article  CAS  Google Scholar 

  3. Feltham H L C and Brooker S 2014 Coord. Chem. Rev. 276 1

    Article  CAS  Google Scholar 

  4. Woodruff D N, Winpenny R E P and Layfield R A 2013 Chem. Rev. 113 5110

    Article  CAS  Google Scholar 

  5. Wang B W, Wang X Y, Sun H L, Jiang S D and Gao S 2013 Philos. Trans. R. Soc. London, Ser. A 371 20120316

    Article  CAS  Google Scholar 

  6. Habib F and Murugesu M 2013 Chem. Soc. Rev. 42 3278

    Article  CAS  Google Scholar 

  7. Sorace L, Benelli C and Gatteschi D 2011 Chem. Soc. Rev. 40 3092

    Article  CAS  Google Scholar 

  8. Friedman J R and Sarachik M P 2010 Annu. Rev. Condens. Matter Phys. 1 109

    Article  CAS  Google Scholar 

  9. Luzon J and Sessoli R 2012 Dalton Trans. 41 13556

    Article  CAS  Google Scholar 

  10. Wang B, Jiang S, Wang X and Gao S 2009 Sci. China, Ser. B Chem. 52 1739

    Article  CAS  Google Scholar 

  11. Sessoli R and Powell A K 2009 Coord. Chem. Rev. 253 2328

    Article  CAS  Google Scholar 

  12. Ishikawa N 2007 Polyhedron 26 2147

    Article  CAS  Google Scholar 

  13. Pedersen K S, Bendix J and Clerac R 2014 Chem. Commun. 50 4396

    Article  CAS  Google Scholar 

  14. Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203

    Article  CAS  Google Scholar 

  15. Leuenberger M N and Loss D 2001 Nature 410 789

    Article  CAS  Google Scholar 

  16. Yamanouchi M, Chiba D, Matsukura F and Ohno H 2004 Nature 428 539

    Article  CAS  Google Scholar 

  17. Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179

    Article  CAS  Google Scholar 

  18. Xiong G, Qin X Y, Shi P F, Hou Y L, Cui J Z and Zhao B 2014 Chem. Commun. 50 4255

    Article  CAS  Google Scholar 

  19. Li D P, Wang T W, Li C H, Liu D S, Li Y Z and You X Z 2010 Chem. Commun. 46 2929

    Article  CAS  Google Scholar 

  20. Baldoví J J, Cardona-Serra S, Clemente-Juan J M, Coronado E, Gaita-Ariño A and Palii A 2012 Inorg. Chem. 51 12565

    Article  CAS  Google Scholar 

  21. Meihaus K R and Long J R 2013 J. Am. Chem. Soc. 135 17952

    Article  CAS  Google Scholar 

  22. Chen G J, Guo Y N, Tian J L, Tang J, Gu W, Liu X, Yan S P, Cheng P and Liao D Z 2012 Chem. Eur. J. 18 2484

    Article  CAS  Google Scholar 

  23. Ungur L, Le Roy J J, Korobkov I, Murugesu M and Chibotaru L F 2014 Angew. Chem. Int. Ed. 53 4413

    Article  CAS  Google Scholar 

  24. Clemente-Juan J M, Coronado E and Gaita-Ariño A 2015 In Lanthanides and Actinides in Molecular Magnetism (Weinheim: Wiley-VCH Verlag) pp. 27–60

    Google Scholar 

  25. Jiang S -D, Wang B -W and Gao S 2014 (Berlin Heidelberg: Springer) pp. 1–31

  26. Ganivet C R, Ballesteros B, de la Torre G, Clemente-Juan J M, Coronado E and Torres T 2013 Chem. Eur. J. 19 1457

    Article  CAS  Google Scholar 

  27. Sun W -B, Yan P -F, Jiang S -D, Wang B -W and Zhang Y -Q 2016 Chem. Sci. 7 684

    Article  CAS  Google Scholar 

  28. Jeletic M, Lin P H, Le Roy J J, Korobkov I, Gorelsky S I and Murugesu M 2011 J. Am. Chem. Soc. 133 19286

    Article  CAS  Google Scholar 

  29. Ishikawa N, Sugita M, Ishikawa T, Koshihara S and Kaizu Y 2003 J. Am. Chem. Soc. 125 8694

    Article  CAS  Google Scholar 

  30. Aromi G and Brechin E K 2006 Struct. Bond. 122 1

    Article  CAS  Google Scholar 

  31. Ishikawa N, Sugita M, Ishikawa T, Koshihara S and Kaizu Y 2004 J. Phys. Chem. B 108 11265

    Article  CAS  Google Scholar 

  32. Gregson M, Chilton N F, Ariciu A -M, Tuna F and Crowe I F 2016 Chem. Sci. 7 155

    Article  CAS  Google Scholar 

  33. Chilton N F, Langley S K, Moubaraki B, Soncini A, Batten S R and Murray K S 2013 Chem. Sci. 4 1719

    Article  CAS  Google Scholar 

  34. Boulon M E, Cucinotta G, Luzon J, Degl’Innocenti C and Perfetti M 2013 Angew. Chem. Int. Ed. 52 350

    Article  CAS  Google Scholar 

  35. Chilton N F 2015 Inorg. Chem. 54 2097

    Article  CAS  Google Scholar 

  36. Chilton N F, Goodwin C A P, Mills D P and Winpenny R E P 2015 Chem. Commun. 51 101

    Article  CAS  Google Scholar 

  37. Blackburn O A, Chilton N F, Keller K, Tait C E and Myers W K 2015 Angew. Chem. Int. Ed. 54 10783

    Article  CAS  Google Scholar 

  38. Mei X -L, Ma Y, Li L -C and Liao D -Z 2012 Dalton Trans. 41 505

    Article  CAS  Google Scholar 

  39. Gatteschi D and Sorace L 2001 J. Solid State Chem. 159 253

    Article  CAS  Google Scholar 

  40. Rechkemmer Y, Fischer J E, Marx R, Dörfel M and Neugebauer P 2015 J. Am. Chem. Soc. 137 13114

    Article  CAS  Google Scholar 

  41. Chen Y -C, Liu J -L, Ungur L, Liu J and Li Q -W 2016 J. Am. Chem. Soc. 138 2829

    Article  CAS  Google Scholar 

  42. Goswami T and Misra A 2012 J. Phys. Chem. A 116 5207

    Article  CAS  Google Scholar 

  43. Pedersen K S, Ungur L, Sigrist M, Sundt A and Schau-Magnussen M 2014 Chem. Sci. 5 1650

    Article  CAS  Google Scholar 

  44. Oyarzabal I, Ruiz J, Ruiz E, Aravena D and J M S. 2015 and, Colacio E Chem. Commun. 51 12353

    Article  CAS  Google Scholar 

  45. Chen G -J, Gao C -Y, Tian J -L, Tang J and Gu W 2011 Dalton Trans. 40 5579

    Article  CAS  Google Scholar 

  46. Mondal A K, Goswami S and Konar S 2015 Dalton Trans. 44 5086

    Article  CAS  Google Scholar 

  47. Wang Y -L, Gu B, Ma Y, Xing C and Wang Q -L 2014 CrystEngComm 16 2283

    Article  CAS  Google Scholar 

  48. Pugh T, Tuna F, Ungur L, Collison D and McInnes E J L 2015 Nat. Commun. 6 7492

    Article  Google Scholar 

  49. Das S, Bejoymohandas K S, Dey A, Biswas S, Reddy M L P et al. 2015 Chem. Eur. J. 21 6449

    Article  CAS  Google Scholar 

  50. Rinehart J D and Long J R 2011 Chem. Sci. 2 2078

    Article  CAS  Google Scholar 

  51. Gudel H U, Hauser U and Furrer A 1979 Inorg. Chem 18 2730

    Article  Google Scholar 

  52. Amoretti G, Caciuffo R, Carretta S, Guidi T, Magnani N and Santini P 2008 Inorg. Chim. Acta 361 3771

    Article  CAS  Google Scholar 

  53. Bencini A and Gatteschi D 1990 In EPR of Exchange Coupled Systems (Berlin: Springer-Verlag)

    Google Scholar 

  54. Barra A L, Gatteschi D, Sessoli R, Abbati G L and Cornia A 1997 Angew. Chem. Int. Ed. 36 2329

    Article  CAS  Google Scholar 

  55. Liu J, Chen Y -C, Jia J -H, Liu J -L and Vieru V 2016 J. Am. Chem. Soc. 138 5441

    Article  CAS  Google Scholar 

  56. Ungur L and Chibotaru L F 2015 In Lanthanides and Actinides in Molecular Magnetism (Weinheim: Wiley-VCH Verlag) pp. 153–184

    Google Scholar 

  57. Huang X -C, Vieru V, Chibotaru L F, Wernsdorfer W, Jiang S -D and Wang X -Y 2015 Chem. Commun. 51 10373

    Article  CAS  Google Scholar 

  58. Marx R, Moro F, Dorfel M, Ungur L and Waters M 2014 Chem. Sci. 5 3287

    Article  CAS  Google Scholar 

  59. Le Roy J J, Ungur L, Korobkov I, Chibotaru L F and Murugesu M 2014 J. Am. Chem. Soc. 136 8003

    Article  CAS  Google Scholar 

  60. Guo Y -N, Ungur L, Granroth G E, Powell A K and Wu C 2014 Sci. Rep. 4 5471

    CAS  Google Scholar 

  61. Chibotaru L F 2014 In Theoretical Understanding of Anisotropy in Molecular Nanomagnets (Berlin Heidelberg: Springer) pp. 1–45

    Book  Google Scholar 

  62. Venugopal A, Tuna F, Spaniol T P, Ungur L and Chibotaru L F 2013 Chem. Commun. 49 901

    Article  CAS  Google Scholar 

  63. Blagg R J, Ungur L, Tuna F, Speak J and Comar P 2013 Nat. Chem. 5 673

    Article  CAS  Google Scholar 

  64. Wang Y -X, Shi W, Li H, Song Y and Fang L 2012 Chem. Sci. 3 3366

    Article  CAS  Google Scholar 

  65. Gendron F, Pritchard B, Bolvin H and Autschbach J 2015 Dalton Trans. 44 19886

    Article  CAS  Google Scholar 

  66. Gómez-Coca S, Aravena D, Morales R and Ruiz E 2015 Coord. Chem. Rev. 289 379

    Article  CAS  Google Scholar 

  67. Hänninen M M, Mota A J, Aravena D, Ruiz E and Sillanpää R 2014 Chem. Eur. J. 20 8410

    Article  CAS  Google Scholar 

  68. Oyarzabal I, Ruiz J, Seco J M, Evangelisti M and Camón A 2014 Chem. Eur. J. 20 14262

    Article  CAS  Google Scholar 

  69. Gómez-Coca S, Urtizberea A, Cremades E, Alonso P J and Camón A 2014 Nat. Commun. 5 5300

    Article  CAS  Google Scholar 

  70. Costes J P, Titos-Padilla S, Oyarzabal I, Gupta T and Duhayon C 2016 Inorg. Chem. 55 4428

    Article  CAS  Google Scholar 

  71. Upadhyay A, Singh S K, Das C, Mondol R and Langley S K 2014 Chem. Commun. 50 8838

    Article  CAS  Google Scholar 

  72. Singh S K, Gupta T and Rajaraman G 2014 Inorg. Chem. 53 10835

    Article  CAS  Google Scholar 

  73. Rajaraman G, Singh S K, Gupta T and Shanmugam M 2014 Chem. Commun. 50 1551

    Google Scholar 

  74. Gupta T and Rajaraman G 2014 J. Chem. Sci. 126 1569

    Article  CAS  Google Scholar 

  75. Lucaccini E, Sorace L, Perfetti M, Costes J -P and Sessoli R 2014 Chem. Commun. 50 1648

    Article  CAS  Google Scholar 

  76. Costes J P, Titos-Padilla S, Oyarzabal I, Gupta T and Duhayon C 2015 Chem. Eur. J. 21 15785

    Article  CAS  Google Scholar 

  77. Das C, Vaidya S, Gupta T, Frost J M and Righi M 2015 Chem. Eur. J. 21 15639

    Article  CAS  Google Scholar 

  78. Singh S K, Gupta T, Ungur L and Rajaraman G 2015 Chem. Eur. J. 21 13812

    Article  CAS  Google Scholar 

  79. Meihaus K R, Minasian S G, Lukens W W, Kozimor S A and Shuh D K 2014 J. Am. Chem. Soc. 136 6056

    Article  CAS  Google Scholar 

  80. Aquilante F, Autschbach J, Carlson R K, Chibotaru L F and Delcey M G 2016 J. Comput. Chem. 37 506

    Article  CAS  Google Scholar 

  81. Aquilante F, De Vico L, Ferre N, Ghigo G and Malmqvist P A 2010 J. Comput. Chem. 31 224

    Article  CAS  Google Scholar 

  82. Duncan J A 2009 J. Am. Chem. Soc. 131 2416

    Article  CAS  Google Scholar 

  83. Swerts B, Chibotaru L F, Lindh R, Seijo L and Barandiaran Z 2008 J. Chem. Theory Comput. 4 586

    Article  CAS  Google Scholar 

  84. Veryazov V, Widmark P O, Serrano-Andres L, Lindh R and Roos B O 2004 Int. J. Quantum Chem. 100 626

    Article  CAS  Google Scholar 

  85. Karlstrom G, Lindh R, Malmqvist P A, Roos B O and Ryde U 2003 Comput. Mater. Sci. 28 222

    Article  CAS  Google Scholar 

  86. Malmqvist P A, Roos B O and Schimmelpfennig B 2002 Chem. Phys. Lett. 357 230

    Article  CAS  Google Scholar 

  87. Chibotaru L F and Ungur L 2012 J. Chem. Phys. 137 064112

    Article  CAS  Google Scholar 

  88. Ungur L and Chibotaru L 2006 In The computer programs SINGLE_ANISO and POLY_ANISO (Leuven: University of Leuven)

    Google Scholar 

  89. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, ratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A ., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 In Gaussian 09, Revision D.01 (Wallingford CT: Gaussian, Inc.)

    Google Scholar 

  90. Cundari T R and Stevens W J 1993 J. Chem. Phys. 98 5555

    Article  CAS  Google Scholar 

  91. Schafer A, Huber C and Ahlrichs R 1994 J. Chem. Phys. 100 5829

    Article  Google Scholar 

  92. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  93. Lee C, Yang W and Parr R G 1988 Phys. Rev. B. 37 785

    Article  CAS  Google Scholar 

  94. Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623

    Article  CAS  Google Scholar 

  95. Bader R F W 1990 In Atoms in molecules– A Quantum Theory (Oxford, UK: Oxford University Press)

  96. Bader R F W 2009 J. Phys. Chem. A 113 10391

    Article  CAS  Google Scholar 

  97. BieglerKönig F and Schönbohm J 2002 J. Comput. Chem. 23 1489

    Article  CAS  Google Scholar 

  98. Chilton N F, Collison D, McInnes E J L, Winpenny R E P and Soncini A 2013 Nat. Commun. 4 2551

    Article  CAS  Google Scholar 

  99. Espinosa E, Alkorta I, Elguero J and Molins E 2002 J. Chem. Phys. 117 5529

    Article  CAS  Google Scholar 

  100. Jenkins S and Morrison I 2000 Chem. Phys. Lett. 317 97

    Article  CAS  Google Scholar 

  101. Jabłonński M 2015 J. Phys. Chem. A 119 11384

    Article  CAS  Google Scholar 

  102. Jabłoński M 2015 J. Phys. Chem. A 119 4993

    Article  CAS  Google Scholar 

  103. Popelier P and Logothetis G 1998 J. Organomet. Chem. 555 101

    Article  CAS  Google Scholar 

  104. Tognetti V, Joubert L, Raucoules R, De Bruin T and Adamo C 2012 J. Phys. Chem. A 116 5472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GR would like to thank SERB (EMR/2014/00024) for the funding. TG would like to thank UGC New Delhi for SRF fellowship. GV would like to thank Indian Institute of Technology Bombay for Post-Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GOPALAN RAJARAMAN.

Additional information

Supplementary Information (SI)

We have summarised the energies (cm−1), corresponding g-tensors, tunnel splitting (cm−1), crystal field parameters and angle between main magnetic axis of ground state energy multiplet and higher excited levels of all the Kramers doublets and pseudo-doublets in 2, 2a, 4, 4a and 1, 1a, 3, 3a, respectively, in Tables S1S9. The orientation of the principal anisotropy axis (gz) for complexes a) 2 and b) 2a are given in Figure S1. The core structural moieties of complexes atom numbers correspond to the representation of Mulliken charges are given in the Figure S2. The second-order perturbation theory computed donor-acceptor charge transfer stabilisation energy in all the eight complexes are given in Figures S3S18. The molecular graphs of the complexes and the contour line diagram of the Laplacian of electron density drawn along the three carbon (C-C-C) plane are given in the Figures S19 and S20 respectively.

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 6.82 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUPTA, T., VELMURUGAN, G., RAJESHKUMAR, T. et al. Role of Lanthanide-Ligand bonding in the magnetization relaxation of mononuclear single-ion magnets: A case study on Pyrazole and Carbene ligated LnIII(Ln=Tb, Dy, Ho, Er) complexes. J Chem Sci 128, 1615–1630 (2016). https://doi.org/10.1007/s12039-016-1147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1147-4

Keywords

Navigation