Skip to main content

Advertisement

Log in

Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Diamond-like nanocomposite (DLN) coatings have been deposited over different substrates used for biomedical applications by plasma-enhanced chemical vapour deposition (PECVD). DLN has an interconnecting network of amorphous hydrogenated carbon and quartz-like oxygenated silicon. Raman spectroscopy, Fourier transform–infra red (FT–IR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD) have been used for structural characterization. Typical DLN growth rate is about 1 \({\upmu} \)m/h, measured by stylus profilometer. Due to the presence of quartz-like Si:O in the structure, it is found to have very good adhesive property with all the substrates. The adhesion strength found to be as high as 0·6 N on SS 316 L steel substrates by scratch testing method. The Young’s modulus and hardness have found to be 132 GPa and 14· 4 GPa, respectively. DLN coatings have wear factor in the order of 1 × 10 − 7 mm3/N-m. This coating has found to be compatible with all important biomedical substrate materials and has successfully been deposited over Co–Cr alloy based knee implant of complex shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Bosley R W and Miller R F 1998 United States Patent 5827040

  • Bozhko A, Chudinov S M, Evangelisti M, Stizza S and Dorfman V F 1998 Mater. Sci. Eng. C5 265

    Article  Google Scholar 

  • Bursikova V, Rehulkab P, Chmelikb J, Albertia M, Spaltc Z, Jancaa J and Havel J 2007 J. Phys. Chem. Solids 68 701

    Article  CAS  Google Scholar 

  • Cooper C V, Tredway W K, Guile R N, Rhemer C C, Minick A B and Chapman L W 2007 Cryogenic bearings, United States Patent 7296965

  • De Scheerder I, Szilard M, Yanming H, Ping X B, Verbeken E, Neerinck D, Demeyere E, Coppens W and Van de Werf F 2000 J. Invasive Cardiol. 12 389

    Google Scholar 

  • Ding X-Z, Zhang F-M, Liu X-H, Wang P W, Durrer W G, Cheung W Y, Wang S P and Wilson I H 1999 Thin Solid Films 346 82

    Article  CAS  Google Scholar 

  • Dorfman V F 1998 Thin Solid Films 330 76

    Article  CAS  Google Scholar 

  • Dorfman V F 1992 Thin Solid Films 212 267

    Article  CAS  Google Scholar 

  • Dorfman V F and Goel A 1998 United States Patent 5728465

  • Dorfman V F and Pypkin B 1994 United States Patent 5352493

  • Dorfman V F and Pypkin B 1995 United States Patent 5466431

  • Emerson T P and Gu A L 1996 United States Patent 5529464

  • Grill A 2003 Diam. Relat. Mater. 12 166

    Article  CAS  Google Scholar 

  • Hauert R and Muller U 2003 Diam. Relat. Mater. 12 171

    Article  CAS  Google Scholar 

  • Hauert R 2003 Diam. Relat. Mater. 12 583

    Article  CAS  Google Scholar 

  • Hooshang H 2000 United States Patent 6158893

  • Jacquet J M and Wietig F G 2006 Patent number WO 2006/125683

  • Kester D J, Brodbeck C L, Singer I L and Kyriakopoulos A 1999 Surf. Coat. Technol. 113 268

    Article  CAS  Google Scholar 

  • Kobayashi S, Ozeki K, Hirakuri K K and Aoki H 2006 Key Eng. Mater. 309–311 1289

    Article  Google Scholar 

  • Logothetidis S 2007 Diam. Relat. Mater. 16 1847

    Article  CAS  Google Scholar 

  • Maalouf R, Jaffrezic-Renault N, Vittori O, Sigaud M, Saikali Y, Chebib H, Loir A S, Garrelie F, Donnet C, Takeno T and Takagi T 2006 J. Adv. Sci. 18 31

    Article  Google Scholar 

  • McNamara B P, Murphy H and Morshed M M 2001 Diam. Relat. Mater. 10 1098

    Article  CAS  Google Scholar 

  • Mukherjee S, Raole P M, Kumar A, Chattoraj I, Rao K R M and Manna I 2004 Surf. Coat. Technol. 186 282

    Article  CAS  Google Scholar 

  • Narayan R J 2005 Mater. Sci. Eng. C25 398

    Article  Google Scholar 

  • Neerinck D, Persoone P, Sercu M, Goel A, Kester D and Bray D 1998a Diam. Relat. Mater. 7 468

    Article  CAS  Google Scholar 

  • Neerinck D, Persoone P, Sercu M, Goel A, Venkatraman C, Kester D, Halter C, Swab P and Bray D 1998b Thin Solid Films 317 402

    Article  CAS  Google Scholar 

  • Neerinck D and Goel A 2001 United States Patent 6200675

  • Neerinck D and Persoone P 2001 United States Patent 6228471

  • Pandit A and Padture N P 2003 J. Mat. Sci. Lett. 22 1261

    Article  CAS  Google Scholar 

  • Platon F, Fournier P and Rouxel S 2001 Wear 250 227

    Article  Google Scholar 

  • Pollak F H and Dorfman B 1997 Thin Solid Films 292 173

    Article  CAS  Google Scholar 

  • Polyakov V I, Rukovishnikov A I, Perov P I, Khomich A V, Sukhanov A A, Dorfman B F, Pypkin B N, Abraizov M G and Druz B 1997 Thin Solid Films 292 91

    Article  CAS  Google Scholar 

  • Prasad S V, Christenson T R, Dugger M T, Michael J R and Vanecek C W 2003 American Society for Precision Engineering, Winter Topical Meeting, Vol. 28

  • Rahaman M N, Yao A, Bal B S, Garino J P and Ries M D 2007 J. Am. Ceram. Soc. 90 1965

    Article  CAS  Google Scholar 

  • Rao K R M, Mukherjee S, Raole P M and Manna I 2005 Surf. Coat. Technol. 200 2049

    Article  CAS  Google Scholar 

  • Robertson J 1994 Pure Appl. Chem. 66 1789

    Article  CAS  Google Scholar 

  • Robertson J 2002 Mater. Sci. Eng. R37 129

    Article  Google Scholar 

  • Scharf T W and Singer I L 2003 Tribol. Lett. 14 3

    Article  CAS  Google Scholar 

  • Scharf T W, Ohlhausen J A, Tallant D R and Prasad S V 2007 J. Appl. Phys. 101 0635211

    Article  Google Scholar 

  • Sheeja D, Tay B K, Nung L N 2005 Surf. Coat. Technol. 190 231

    Article  CAS  Google Scholar 

  • Venkatraman C, Brodbeck C and Lei R 1999 Surf. Coat. Technol. 115 215

    Article  CAS  Google Scholar 

  • Venkatraman C, Goel A, Lei R, Kester D and Outten C 1997 Thin Solid Films 308–309 173

    Article  Google Scholar 

  • Yan X-B, Xu T, Chen G, Xue Q-J and Yang S-R 2004 Electrochem. Commun. 6 1159

    Article  CAS  Google Scholar 

  • Yang W J, Auh K H, Li C and Niihara K 2000 J. Mat. Sci. Lett. 19 1649

    Article  CAS  Google Scholar 

  • Yang W J, Choab Y-H, Sekinoc T, Shima K B, Niiharac K and Auha K H 2003a Mater. Lett. 57 3305

    Article  CAS  Google Scholar 

  • Yang W J, Choab Y-H, Sekinoc T, Shima K B, Niiharac K and Auha K H 2003b Thin Solid Films 434 49

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to Dr K H Sancheti for allowing us to coat indigenously developed ‘Indus Knee’ orthopedic implant. Dr Raghu Bhattacharyya helped in solving many technical problems through discussions. Soumya Sarkar has done the profilometer measurements. Dr Sandip Bysakh kindly did the TEM measurements. Authors also thank Dr (Mrs) S Sen and Mrs S Roy for their help in taking SEM micrographs. We are thankful to Dr S Majumdar for allowing us to do XRD measurements. Mr. Guillaume Begin of Micro Photonics Inc. and Mr. Rajkishore Sahani of Material Testing & Metallurgy Group, Aimil Ltd., Kolkata, have done hardness and scratch resistence testing of DLN coatings. We are grateful to Prof. Colin Bain for allowing us to use Raman facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AWADESH KR MALLIK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MALLIK, A.K., DANDAPAT, N., GHOSH, P. et al. Deposition and characterization of diamond-like nanocomposite coatings grown by plasma enhanced chemical vapour deposition over different substrate materials. Bull Mater Sci 36, 193–202 (2013). https://doi.org/10.1007/s12034-013-0465-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-013-0465-0

Keywords

Navigation