Skip to main content

Advertisement

Log in

Small molecule ‘4ab’ induced autophagy and endoplasmic reticulum stress-mediated death of aggressive cancer cells grown under adherent and floating conditions

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Metastasis is the leading cause of death in cancer patients and a major challenging aspect of cancer biology. Various adaptive molecular signaling pathways play a crucial role in cancer metastasis and later in the formation of secondary tumors. Aggressive cancer cells like triple negative breast cancer (TNBCs) are more inclined to undergo metastasis hence having a high recurrence rate and potential of micro-metastasis. Tumor cells in circulation known as circulating tumor cells (CTCs) offer an attractive drug target to treat metastatic disease. Cell cycle regulation and stress response of CTCs in blood has a crucial role in their survival and progression and thus may be considered therapeutically active hotspots. The cyclin D/cyclin-dependent kinase (CDK) pathway regulates cell cycle checkpoints, a process that is frequently dysregulated in cancer cells. Selective CDK inhibitors can limit the phosphorylation of cell cycle regulatory proteins by inducing cell cycle phase arrest, and thus may be an effective therapeutic strategy for aggressive cancer cells in their dividing phase at the primary or secondary site. However, during the floating condition, cancer cells halt their multiplication process and proceed through the various steps of metastasis. Current study showed that a novel CDK inhibitor 4ab induced autophagy and endoplasmic reticulum (ER) stress in agressive cancer cells grown under adherent and floating conditions resulting in paraptosis. Further, our results showed that 4ab efficiently induced cell death in aggressive cancer cells through ER stress-mediated activation of JNK signaling. Additionally, was observed that treatment of 4ab in tumor-bearing mice displayed a significant reduction in tumor burden and micro-metastasis. The outcome of these studies showed that 4ab can be a potential anti-tumor and anti-metastatic agent.

Graphical abstract

Graphical representation of 4ab: image representing the effect of 4ab on death-inducing pathways in aggressive cancer cells. 4ab induces ER stress and activates autophagy leading to vacuolation of there by causing apoptosis in aggressive cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Susanti NM, Tjahjono DH. Cyclin-dependent kinase 4 and 6 inhibitors in cell cycle dysregulation for breast cancer treatment. Molecules. 2021;26(15):4462. https://doi.org/10.3390/molecules26154462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cicenas J, Kalyan K, Sorokinas A, Jatulyte A, Valiunas D, Kaupinis A, Valius M. Highlights of the latest advances in research on CDK inhibitors. Cancers. 2014;6(4):2224–42. https://doi.org/10.3390/cancers6042224.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Adeshakin FO, Adeshakin AO, Afolabi LO, Yan D, Zhang G, Wan X. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.626577.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Örd M, Möll K, Agerova A, Kivi R, Faustova I, Venta R, Valk E, Loog M. Multisite phosphorylation code of CDK. Nat Struct Mol Biol. 2019;26(7):649–58. https://doi.org/10.1038/s41594-019-0256-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patterson JO, Basu S, Rees P, Nurse P. CDK control pathways integrate cell size and ploidy information to control cell division. Elife. 2021. https://doi.org/10.7554/eLife.64592.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: therapeutic potential of targeting the CDK signaling pathway. Hepatol Res. 2019;49(10):1097–108. https://doi.org/10.1111/hepr.13353.

    Article  CAS  PubMed  Google Scholar 

  7. García-Reyes B, Kretz AL, Ruff JP, Von Karstedt S, Hillenbrand A, Knippschild U, Henne-Bruns D, Lemke J. The emerging role of cyclin-dependent kinases (CDKs) in pancreatic ductal adenocarcinoma. Int J Mol Sci. 2018;19(10):3219. https://doi.org/10.3390/ijms19103219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci. 2020;21(6):1960. https://doi.org/10.3390/ijms21061960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malhotra N, Gupta R, Kumar P. Pharmacological relevance of CDK inhibitors in Alzheimer’s disease. Neurochem Int. 2021;148:105115. https://doi.org/10.1016/j.neuint.2021.105115.

    Article  CAS  PubMed  Google Scholar 

  10. Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Devaraj KB, Mirzaei M, You Y, Graham SL, Gupta V. Cell cycle deficits in neurodegenerative disorders: uncovering molecular mechanisms to drive innovative therapeutic development. Aging Dis. 2020;11(4):946. https://doi.org/10.14336/AD.2019.0923.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cartwright JA, Lucas CD, Rossi AG. Inflammation resolution and the induction of granulocyte apoptosis by cyclin-dependent kinase inhibitor drugs. Front Pharmacol. 2019;19(10):55. https://doi.org/10.3389/fphar.2019.00055.

    Article  CAS  Google Scholar 

  12. Wang P, Xie M, Yang D, Wang F, Chen E. 2020 Integrative multi-omics analysis reveals the landscape of cyclin-dependent kinase (CDK) family genes in pan-cancer, https://doi.org/10.21203/rs.3.rs-24985/v2

  13. Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol. 2018;8(9):180112. https://doi.org/10.1098/rsob.180112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loyer P, Trembley JH. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: cyclins L and CDK11 at the crossroads of cell cycle and regulation of gene expression. In: Seminars in cell & developmental biology. Academic Press; 2020. p. 36–45.

    Google Scholar 

  15. Hassan S, Sajjad N, Khan SU, Gupta S, Bhat MA, Ali R, Ahmad Z, Ganie SA, Hamid R. Dipsacus inermis Wall. Modulates inflammation by inhibiting NF-κB pathway: an in vitro and in vivo study. J Ethnopharmacol. 2020;254:112710. https://doi.org/10.1016/j.jep.2020.112710.

    Article  CAS  PubMed  Google Scholar 

  16. Khan SU, Pathania AS, Wani A, Fatima K, Mintoo MJ, Hamza B, Paddar MA, Bhumika W, Anand LK, Maqbool MS, Mir SA. Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. Sci Rep. 2022;12(1):5052. https://doi.org/10.1038/s41598-022-07955-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh U, Chashoo G, Khan SU, Mahajan P, Nargotra A, Mahajan G, Singh A, Sharma A, Mintoo MJ, Guru SK, Aruri H. Design of novel 3-pyrimidinylazaindole CDK2/9 inhibitors with potent in vitro and in vivo antitumor efficacy in a triple-negative breast cancer model. J Med Chem. 2017;60(23):9470–89. https://doi.org/10.1021/acs.jmedchem.7b00663.

    Article  CAS  PubMed  Google Scholar 

  18. Bury M, Le Calvé B, Ferbeyre G, Blank V, Lessard F. New insights into CDK regulators: novel opportunities for cancer therapy. Trends Cell Biol. 2021;31(5):331–44. https://doi.org/10.1016/j.tcb.2021.01.010.

    Article  CAS  PubMed  Google Scholar 

  19. Khan SU, Fatima K, Malik F. Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metas. 2022;39(5):715–26. https://doi.org/10.1007/s10585-022-10172-9.

    Article  Google Scholar 

  20. Gao JJ, Cheng J, Bloomquist E, Sanchez J, Wedam SB, Singh H, Amiri-Kordestani L, Ibrahim A, Sridhara R, Goldberg KB, Theoret MR. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US food and drug administration pooled analysis. Lancet Oncol. 2020;21(2):250–60. https://doi.org/10.1016/S1470-2045(19)30804-6.

    Article  CAS  PubMed  Google Scholar 

  21. Cidado J, Boiko S, Proia T, Ferguson D, Criscione SW, San Martin M, Pop-Damkov P, Su N, Roamio Franklin VN, Sekhar Reddy Chilamakuri C, D’Santos CS. AZD4573 Is a highly selective CDK9 inhibitor that suppresses MCL-1 and Induces apoptosis in hematologic cancer cells AZD4573, a selective CDK9 inhibitor, targets MCL-1. Clin Cancer Res. 2020;26(4):922–34. https://doi.org/10.1158/1078-0432.CCR-19-1853.

    Article  CAS  PubMed  Google Scholar 

  22. Mintoo M, Khan S, Wani A, Malik S, Bhurta D, Bharate S, Malik F, Mondhe D. A rohitukine derivative IIIM-290 induces p53 dependent mitochondrial apoptosis in acute lymphoblastic leukemia cells. Mol Carcinog. 2021;60(10):671–83. https://doi.org/10.1002/mc.23332.

    Article  CAS  PubMed  Google Scholar 

  23. Odle RI, Walker SA, Oxley D, Kidger AM, Balmanno K, Gilley R, Okkenhaug H, Florey O, Ktistakis NT, Cook SJ. An mTORC1-to-CDK1 switch maintains autophagy suppression during mitosis. Mol Cell. 2020;77(2):228-240.e7. https://doi.org/10.1016/j.molcel.2019.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wani A, Al Rihani SB, Sharma A, Weadick B, Govindarajan R, Khan SU, Sharma PR, Dogra A, Nandi U, Reddy CN, Bharate SS. Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy. 2021;17(11):3813–32. https://doi.org/10.1080/15548627.2021.1872187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Khan SU, Fatima K, Aisha S, Hamza B, Malik F. Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol. 2022;40(1):12. https://doi.org/10.1007/s12032-022-01871-0.

    Article  PubMed  Google Scholar 

  26. Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med. 2022;6:1–9. https://doi.org/10.1007/s10238-022-00955-5.

    Article  Google Scholar 

  27. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A. Colorectal cancer statistics, 2017. CA: Cancer J Clin. 2017;67(3):177–93. https://doi.org/10.3322/caac.21395.

    Article  PubMed  Google Scholar 

  28. Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH, Neoptolemos JP. Pancreatic cancer. Nat Rev Dis Primers. 2016;2(1):1–22. https://doi.org/10.1038/nrdp.2016.22.

    Article  Google Scholar 

  29. Hidalgo M. Pancreatic cancer. N Engl J Med. 2010;362(17):1605–17. https://doi.org/10.1056/NEJMra0901557.

    Article  CAS  PubMed  Google Scholar 

  30. Mancuso A, Calabrò F, Sternberg CN. Current therapies and advances in the treatment of pancreatic cancer. Crit Rev Oncol Hematol. 2006;58(3):231–41. https://doi.org/10.1016/j.critrevonc.2006.02.004.

    Article  PubMed  Google Scholar 

  31. Chand S, O’Hayer K, Blanco FF, Winter JM, Brody JR. The landscape of pancreatic cancer therapeutic resistance mechanisms. Int J Biol Sci. 2016;12(3):273. https://doi.org/10.7150/ijbs.14951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Conroy T, Bachet JB, Ayav A, Huguet F, Lambert A, Caramella C, Maréchal R, Van Laethem JL, Ducreux M. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur J Cancer. 2016;1(57):10–22. https://doi.org/10.1016/j.ejca.2015.12.026.

    Article  Google Scholar 

  33. Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108(2):153–64. https://doi.org/10.1016/s0092-8674(02)00625-6.

    Article  CAS  PubMed  Google Scholar 

  34. Kretz AL, Von Karstedt S, Hillenbrand A, Henne-Bruns D, Knippschild U, Trauzold A, Lemke J. Should we keep walking along the trail for pancreatic cancer treatment? Revisiting TNF-related apoptosis-inducing ligand for anticancer therapy. Cancers. 2018;10(3):77. https://doi.org/10.3390/cancers10030077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, Chone L, Francois E, Artru P, Biagi JJ, Lecomte T. 2018 Unicancer GI PRODIGE 24/CCTG PA. 6 trial: A multicenter international randomized phase III trial of adjuvant mFOLFIRINOX versus gemcitabine (gem) in patients with resected pancreatic ductal adenocarcinomas.

  36. Saung MT, Zheng L. Current standards of chemotherapy for pancreatic cancer. Clin Ther. 2017;39(11):2125–34. https://doi.org/10.1016/j.clinthera.2017.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130–46. https://doi.org/10.1038/nrd4504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez Suarez N, Rodriguez Torres S, Ouanouki A, El Cheikh-Hussein L, Annabi B. EGCG inhibits adipose-derived mesenchymal stem cells differentiation into adipocytes and prevents a STAT3-mediated paracrine oncogenic control of triple-negative breast cancer cell invasive phenotype. Molecules. 2021;26(6):1506. https://doi.org/10.3390/molecules26061506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wahba HA, El-Hadaad HA. Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med. 2015;12(2):106. https://doi.org/10.7497/j.issn.2095-3941.2015.0030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma F, Li H, Wang H, Shi X, Fan Y, Ding X, Lin C, Zhan Q, Qian H, Xu B. Enriched CD44+/CD24− population drives the aggressive phenotypes presented in triple-negative breast cancer (TNBC). Cancer Lett. 2014;353(2):153–9. https://doi.org/10.1016/j.canlet.2014.06.022.

    Article  CAS  PubMed  Google Scholar 

  41. Pickup MW, Owens P, Gorska AE, Chytil A, Ye F, Shi C, Weaver VM, Kalluri R, Moses HL, Novitskiy SV. Development of aggressive pancreatic ductal adenocarcinomas depends on granulocyte colony stimulating factor secretion in carcinoma cellsG-CSF regulation of aggressive PDAC. Cancer Immunol Res. 2017;5(9):718–29. https://doi.org/10.1158/2326-6066.CIR-16-0311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mendes GC, Reis PA, Calil IP, Carvalho HH, Aragão FJ, Fontes EP. GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress-and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci USA. 2013;110(48):19627–32. https://doi.org/10.1073/pnas.1311729110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee WJ, Chien MH, Chow JM, Chang JL, Wen YC, Lin YW, Cheng CW, Lai GM, Hsiao M, Lee LM. Corrigendum: Nonautophagic cytoplasmic vacuolation death induction in human PC-3M prostate cancer by curcumin through reactive oxygen species-mediated endoplasmic reticulum stress. Sci Rep. 2017. https://doi.org/10.1038/srep10420.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mimnaugh EG, Xu W, Vos M, Yuan X, Isaacs JS, Bisht KS, Gius D, Neckers L. Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther. 2004;3(5):551–66. https://doi.org/10.1158/1535-7163.551.3.5.

    Article  CAS  PubMed  Google Scholar 

  45. Nishiumi F, Kawai Y, Nakura Y, Yoshimura M, Wu HN, Hamaguchi M, Kakizawa S, Suzuki Y, Glass JI, Yanagihara I. Blockade of endoplasmic reticulum stress-induced cell death by Ureaplasma parvum vacuolating factor. Cell Microbiol. 2021;12:e13392. https://doi.org/10.1111/cmi.13392.

    Article  CAS  Google Scholar 

  46. Ram BM, Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine: a treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochim et Biophys Acta (BBA) Mol Cell Res. 2014;11:2497–512. https://doi.org/10.1016/j.bbamcr.2014.06.020.

    Article  CAS  Google Scholar 

  47. Williams JA, Hou Y, Ni HM, Ding WX. Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death. Pharm Res. 2013;30:2279–89. https://doi.org/10.1007/s11095-013-1139-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fuest M, Willim K, MacNelly S, Fellner N, Resch GP, Blum HE, Hasselblatt P. The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology. 2012;55(2):408–18. https://doi.org/10.1002/hep.24699.

    Article  CAS  PubMed  Google Scholar 

  49. Hendrix MJ, Seftor EA, Kirschmann DA, Seftor RE. Molecular biology of breast cancer metastasis molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res. 2000;2(6):1–6. https://doi.org/10.1186/bcr88.

    Article  Google Scholar 

  50. Geng SQ, Alexandrou AT, Li JJ. Breast cancer stem cells: Multiple capacities in tumor metastasis. Cancer Lett. 2014;349(1):1–7. https://doi.org/10.1016/j.canlet.2014.03.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu Z, Pestell TG, Lisanti MP, Pestell RG. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144–51. https://doi.org/10.1016/j.biocel.2012.08.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124–34. https://doi.org/10.1038/nm.4409.

    Article  CAS  PubMed  Google Scholar 

  53. Park SY, Choi JH, Nam JS. Targeting cancer stem cells in triple-negative breast cancer. Cancers. 2019;11(7):965. https://doi.org/10.3390/cancers11070965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hua Z, White J, Zhou J. Cancer stem cells in TNBC. In: Seminars in cancer biology. Academic Press; 2022. p. 26–34.

    Google Scholar 

Download references

Acknowledgements

We would also like to thank our lab colleagues, particularly Abubakar Wani (St. Jude Children Hospital, USA), Shariqa Aisha (CSIR IIIM, India) for their fruitful discussions, proof read  and valuable inputs. We would like to thank CSIR-IIIM for providing publication approval (Institutional Publication ID No. CSIR-IIIM/IPR/00465).

Funding

Funding for F.M. laboratory was provided by the Council of Scientific and Industrial Research (CSIR) India fellowship, a grant from the Department of Biotechnology, Ministry of Science of Technology (DBT) (BT/IN/SWISS/48/FM/2018-19). CSIR-SRF budget head for providing fellowship to S.K.

Author information

Authors and Affiliations

Authors

Contributions

FM supervised the study; FM and SK designed the experiments; SK performed most of the experiments and wrote the paper; SK and KF helped in the interpretation of the results; SK and KF repeated most of the experiments; SK draws the graphical abstract; SK and KF performed animal experimentation. US and PP synthesized the molecule.

Corresponding authors

Correspondence to Sameer Ullah Khan or Fayaz Malik.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

The use of experimental animals in this study was approved by the Ethics and Institutional Animal Care and Use, Committees of the Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM) following guidelines of the Committee for the Purpose of Control and Supervision of Experiment on Animals (CPCSEA). I confirm that all methods were carried out in accordance with relevant guidelines and regulations. I confirm that the study was carried out in compliance with the ARRIVE guidelines.

Consent for publication

The content of this manuscript has not been previously published anywhere and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1184 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.U., Fatima, K., Singh, U. et al. Small molecule ‘4ab’ induced autophagy and endoplasmic reticulum stress-mediated death of aggressive cancer cells grown under adherent and floating conditions. Med Oncol 40, 121 (2023). https://doi.org/10.1007/s12032-023-01963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01963-5

Keywords

Navigation