Skip to main content

Advertisement

Log in

Understanding Fibrosis in Systemic Sclerosis: Novel and Emerging Treatment Approaches

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Over the years, our perceptions of fibrogenesis in systemic sclerosis (SSc) have advanced a lot. Herein, we review potential targets for SSc discovered in the past 3 years.

Recent Findings

In recent years, metabolites have come into the limelight of SSc research. Anti-oxidants, promotor of adipogenesis, modulator of fatty acid metabolism, regulator of glucose homeostasis, and adenosine deaminase open a new door for SSc treatment. A mosaic of biolipids, especially cannabinoid receptor 2 agonist, represents a rational therapeutic approach in fibrosis. In terms of immune aspects, targeting chemokines or integrins for cell adhesion may become new approach to inhibiting fibrotic pathways. Epigenetic modulation of immune pathways has been uncovered much recently. Targeting histone modifications and lncRNAs has demonstrated therapeutic potential in SSc animal models. The classical JAK-STAT and interferon pathway drive great attention these years because of the promising potential for the drug repurposing of targeted therapies from arthritis to SSc. In fibrosis-associated developmental pathways, BMP, Hedgehog, and PU.1 are expected to offer new targets to restrain fibrosis.

Summary

New targets involved in metabolic reprogramming, immunity, epigenetics together with developmental and apoptotic pathways open new avenues for therapeutic modulation in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Denton CP, Khanna D. Systemic sclerosis. Lancet (Lond, Engl). 2017;390(10103):1685–99. https://doi.org/10.1016/s0140-6736(17)30933-9.

    Article  Google Scholar 

  2. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002. https://doi.org/10.1038/nrdp.2015.2.

    Article  PubMed  Google Scholar 

  3. Patel CH, Leone RD, Horton MR, Powell JD. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov. 2019;18(9):669–88. https://doi.org/10.1038/s41573-019-0032-5.

    Article  CAS  PubMed  Google Scholar 

  4. Doridot L, Jeljeli M, Chêne C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Redox Biol. 2019;25:101122. https://doi.org/10.1016/j.redox.2019.101122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med. 2018;125:90–7. https://doi.org/10.1016/j.freeradbiomed.2018.04.554.

    Article  CAS  PubMed  Google Scholar 

  6. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288(2):770–7. https://doi.org/10.1074/jbc.M112.431973.

    Article  CAS  PubMed  Google Scholar 

  7. Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal. 2014;7(341):ra84. https://doi.org/10.1126/scisignal.2004592.

    Article  CAS  PubMed  Google Scholar 

  8. Wei Y, Kim TJ, Peng DH, Duan D, Gibbons DL, Yamauchi M, et al. Fibroblast-specific inhibition of TGF-β1 signaling attenuates lung and tumor fibrosis. J Clin Invest. 2017;127(10):3675–88. https://doi.org/10.1172/JCI94624.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82(12):1807–21. https://doi.org/10.1016/j.bcp.2011.07.093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Chapman HA, Wei Y, Montas G, Leong D, Golden JA, Trinh BN, et al. Reversal of TGFβ1-driven profibrotic state in patients with pulmonary fibrosis. N Engl J Med. 2020;382(11):1068–70. https://doi.org/10.1056/NEJMc1915189This study found EGCG was effective in ameliorating fibrosis in IPF patients.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Huang M, Cai G, Baugh LM, Liu Z, Smith A, Watson M, et al. Systemic sclerosis dermal fibroblasts induce cutaneous fibrosis through lysyl oxidase–like 4: new evidence from three-dimensional skin-like tissues. Arthritis Rheumatol. 2020;72(5):791–801. https://doi.org/10.1002/art.41163.

    Article  CAS  PubMed  Google Scholar 

  12. Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:363–83. https://doi.org/10.1038/s41580-020-0230-3.

    Article  CAS  PubMed  Google Scholar 

  13. Kavian N, Mehlal S, Jeljeli M, Saidu NEB, Nicco C, Cerles O et al. The Nrf2-antioxidant response element signaling pathway controls fibrosis and autoimmunity in scleroderma. Front Immunol. 2018;9(AUG). https://doi.org/10.3389/fimmu.2018.01896

  14. Wei J, Zhu H, Lord G, Bhattachayya M, Jones BM, Allaway G, et al. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res. 2017;183:71–86.e1. https://doi.org/10.1016/j.trsl.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  15. Wu R, Zhang H, Zhao M, Li J, Hu Y, Fu J, et al. Nrf2 in keratinocytes protects against skin fibrosis via regulating epidermal lesion and inflammatory response. Biochem Pharmacol. 2020;174:113846. https://doi.org/10.1016/j.bcp.2020.113846.

    Article  CAS  PubMed  Google Scholar 

  16. Perera LMB, Sekiguchi A, Uchiyama A, Uehara A, Fujiwara C, Yamazaki S, et al. The regulation of skin fibrosis in systemic sclerosis by extracellular ATP via P2Y2 purinergic receptor. J Investig Dermatol. 2019;139(4):890–9. https://doi.org/10.1016/j.jid.2018.10.027.

    Article  CAS  PubMed  Google Scholar 

  17. Sekiguchi A, Motegi S-I, Fujiwara C, Yamazaki S, Inoue Y, Uchiyama A, et al. Inhibitory effect of kaempferol on skin fibrosis in systemic sclerosis by the suppression of oxidative stress. J Dermatol Sci. 2019;96(1):8–17. https://doi.org/10.1016/j.jdermsci.2019.08.004.

    Article  CAS  PubMed  Google Scholar 

  18. Varga J, Marangoni RG. Dermal white adipose tissue implicated in SSc pathogenesis. Nat Rev Rheumatol. 2017;13(2):71–2. https://doi.org/10.1038/nrrheum.2016.223.

    Article  CAS  PubMed  Google Scholar 

  19. Derrett-Smith E, Shi-Wen X, Abraham D, Lacombe O, Broqua P, Junien JL, et al. In vivo assessment of prevention of lung fibrosis using the pan-ppar agonist lanifibranor in the TβRIIΔk-fib mouse model of systemic sclerosis. Rheumatology (United Kingdom). 2019;58:iii25. https://doi.org/10.1093/rheumatology/kez105.003.

    Article  Google Scholar 

  20. Avouac J, Konstantinova I, Guignabert C, Pezet S, Sadoine J, Guilbert T, et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann Rheum Dis. 2017;76(11):1931–40. https://doi.org/10.1136/annrheumdis-2016-210821.

    Article  CAS  PubMed  Google Scholar 

  21. del Rio C, Cantarero I, Palomares B, Gómez-Cañas M, Fernández-Ruiz J, Pavicic C, et al. VCE-004.3, a cannabidiol aminoquinone derivative, prevents bleomycin-induced skin fibrosis and inflammation through PPARγ- and CB2 receptor-dependent pathways. Br J Pharmacol. 2018;175(19):3813–31. https://doi.org/10.1111/bph.14450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. García-Martín A, Garrido-Rodríguez M, Navarrete C, Caprioglio D, Palomares B, DeMesa J, et al. Cannabinoid derivatives acting as dual PPARγ/CB2 agonists as therapeutic agents for systemic sclerosis. Biochem Pharmacol. 2019;163:321–34. https://doi.org/10.1016/j.bcp.2019.02.029.

    Article  CAS  PubMed  Google Scholar 

  23. Navarrete C, Carrillo-Salinas F, Palomares B, Mecha M, Jiménez-Jiménez C, Mestre L, et al. Hypoxia mimetic activity of VCE-004.8, a cannabidiol quinone derivative: implications for multiple sclerosis therapy. J Neuroinflamm. 2018;15(1):64. https://doi.org/10.1186/s12974-018-1103-y.

    Article  CAS  Google Scholar 

  24. Korman B, Marangoni RG, Lord G, Olefsky J, Tourtellotte W, Varga J. Adipocyte-specific repression of PPAR-gamma by NCoR contributes to scleroderma skin fibrosis. Arthritis Res Ther. 2018;20(1). https://doi.org/10.1186/s13075-018-1630-z

  25. Fernández-Ochoa Á, Quirantes-Piné R, Borrás-Linares I, Gemperline D, Alarcón Riquelme ME, Beretta L, et al. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J Pharm Biomed Anal. 2019;162:82–90. https://doi.org/10.1016/j.jpba.2018.09.021.

    Article  CAS  PubMed  Google Scholar 

  26. Murgia F, Svegliati S, Poddighe S, Lussu M, Manzin A, Spadoni T, et al. Metabolomic profile of systemic sclerosis patients. Sci Rep. 2018;8(1):7626. https://doi.org/10.1038/s41598-018-25992-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and bioenergetics pathway perturbation in lung tissues of scleroderma patients with pulmonary fibrosis. Front Immunol. 2020;11. https://doi.org/10.3389/fimmu.2020.00383.

  28. Zhao X, Psarianos P, Ghoraie LS, Yip K, Goldstein D, Gilbert R, et al. Metabolic regulation of dermal fibroblasts contributes to skin extracellular matrix homeostasis and fibrosis. Nat Metabolism. 2019;1(1):147–57. https://doi.org/10.1038/s42255-018-0008-5.

    Article  CAS  Google Scholar 

  29. Castello-Cros R, Whitaker-Menezes D, Molchansky A, Purkins G, Soslowsky LJ, Beason DP, et al. Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell cycle (Georgetown, Tex). 2011;10(13):2140–50. https://doi.org/10.4161/cc.10.13.16227.

    Article  CAS  Google Scholar 

  30. Kowal-Bielecka O, Distler O, Neidhart M, Künzler P, Rethage J, Nawrath M, et al. Evidence of 5-lipoxygenase overexpression in the skin of patients with systemic sclerosis: a newly identified pathway to skin inflammation in systemic sclerosis. Arthritis Rheum. 2001;44(8):1865–75. https://doi.org/10.1002/1529-0131(200108)44:8<1865::Aid-art325>3.0.Co;2-m.

    Article  CAS  PubMed  Google Scholar 

  31. Kowal-Bielecka O, Distler O, Kowal K, Siergiejko Z, Chwiećko J, Sulik A, et al. Elevated levels of leukotriene B4 and leukotriene E4 in bronchoalveolar lavage fluid from patients with scleroderma lung disease. Arthritis Rheum. 2003;48(6):1639–46. https://doi.org/10.1002/art.11042.

    Article  CAS  PubMed  Google Scholar 

  32. • Liang M, Lv J, Jiang Z, He H, Chen C, Xiong Y et al. The leukotriene B4 -leukotriene B4 receptor 1 axis promotes myofibroblast differentiation and tissue fibrosis in systemic sclerosis. Arthritis Rheumatol (Hoboken, NJ). 2019. https://doi.org/10.1002/art.41192. This study found LTB4-BLT1 axis contributed to fibrosis in SSc.

  33. • Bärnthaler T, Theiler A, Zabini D, Trautmann S, Stacher-Priehse E, Lanz I, et al. Inhibiting eicosanoid degradation exerts antifibrotic effects in a pulmonary fibrosis mouse model and human tissue. J Allergy Clin Immunol. 2020;145(3):818–33.e11. https://doi.org/10.1016/j.jaci.2019.11.032This study found inhibition of 15-Prostaglandin dehydrogenase show anti-fibrotic effects.

    Article  CAS  PubMed  Google Scholar 

  34. Bassyouni IH, Talaat RM, Salem TA. Serum concentrations of cyclooxygenase-2 in patients with systemic sclerosis: association with lower frequency of pulmonary fibrosis. J Clin Immunol. 2012;32(1):124–30. https://doi.org/10.1007/s10875-011-9601-z.

    Article  CAS  PubMed  Google Scholar 

  35. Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J. 2016;30(11):3682–9. https://doi.org/10.1096/fj.201600646R.

    Article  CAS  PubMed  Google Scholar 

  36. •• Spiera R, Hummers L, Chung L, Frech TM, Domsic R, Hsu V et al. Safety and efficacy of lenabasum in a phase 2 randomized, placebo-controlled trial in adults with systemic sclerosis. Arthritis & Rheumatology. 2020;n/a(n/a). https://doi.org/10.1002/art.41294. This study led to the Phase III trial of lenabasum.

  37. Hinchcliff M. Lenabasum for skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 2020;n/a(n/a). doi:https://doi.org/10.1002/art.41302.

  38. Ruhl T, Karthaus N, Kim B-S, Beier JP. The endocannabinoid receptors CB1 and CB2 affect the regenerative potential of adipose tissue MSCs. Exp Cell Res. 2020;389(1):111881. https://doi.org/10.1016/j.yexcr.2020.111881.

    Article  CAS  PubMed  Google Scholar 

  39. Avouac J, Pezet S, Gonzalez V, Baudoin L, Cauvet A, Ruiz B, et al. Estrogens counteract the profibrotic effects of TGF-β and their inhibition exacerbates experimental dermal fibrosis. J Investig Dermatol. 2020;140(3):593–601.e7. https://doi.org/10.1016/j.jid.2019.07.719.

    Article  CAS  PubMed  Google Scholar 

  40. Zhu L, Song Y, Li M. 2-Methoxyestradiol inhibits bleomycin-induced systemic sclerosis through suppression of fibroblast activation. J Dermatol Sci. 2015;77(1):63–70. https://doi.org/10.1016/j.jdermsci.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  41. Elhai M, Avouac J, Walker UA, Matucci-Cerinic M, Riemekasten G, Airò P, et al. A gender gap in primary and secondary heart dysfunctions in systemic sclerosis: a EUSTAR prospective study. Ann Rheum Dis. 2016;75(1):163–9. https://doi.org/10.1136/annrheumdis-2014-206386.

    Article  PubMed  Google Scholar 

  42. Bu S, Asano Y, Bujor A, Highland K, Hant F, Trojanowska M. Dihydrosphingosine 1-phosphate has a potent antifibrotic effect in scleroderma fibroblasts via normalization of phosphatase and tensin homolog levels. Arthritis Rheum. 2010;62(7):2117–26. https://doi.org/10.1002/art.27463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kano M, Kobayashi T, Date M, Tennichi M, Hamaguchi Y, Strasser DS, et al. Attenuation of murine sclerodermatous models by the selective S1P1 receptor modulator cenerimod. Sci Rep. 2019;9(1):658. https://doi.org/10.1038/s41598-018-37074-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science (New York, NY). 2019;366(6463). https://doi.org/10.1126/science.aar5551

  45. Zou H, Zhu N, Li S. The emerging role of dipeptidyl-peptidase-4 as a therapeutic target in lung disease. Expert Opin Ther Targets. 2020;24(2):147–53. https://doi.org/10.1080/14728222.2020.1721468.

    Article  CAS  PubMed  Google Scholar 

  46. •• Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, et al. Dipeptidylpeptidase 4 as a marker of activated fibroblasts and a potential target for the treatment of fibrosis in systemic sclerosis. Arthritis Rheumatol. 2020;72(1):137–49. https://doi.org/10.1002/art.41058This study showed repurposing of DPP-4 inhibitors to be a novel anti-fibrotic therapy.

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Wang J, He M, Han H, Xie W, Wang H, et al. Dipeptidyl peptidase IV (DPP-4) inhibition alleviates pulmonary arterial remodeling in experimental pulmonary hypertension. Lab Invest. 2018;98(10):1333–46. https://doi.org/10.1038/s41374-018-0080-1.

    Article  CAS  PubMed  Google Scholar 

  48. Anderluh M, Kocic G, Tomovic K, Kocic H, Smelcerovic A. DPP-4 inhibition: a novel therapeutic approach to the treatment of pulmonary hypertension? Pharmacol Ther. 2019;201:1–7. https://doi.org/10.1016/j.pharmthera.2019.05.007.

    Article  CAS  PubMed  Google Scholar 

  49. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24(8):1121–7. https://doi.org/10.1038/s41591-018-0087-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Kheirollahi V, Wasnick RM, Biasin V, Vazquez-Armendariz AI, Chu X, Moiseenko A, et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat Commun. 2019;10(1):2987. https://doi.org/10.1038/s41467-019-10839-0This study found that metformin could induced lipogenic differentiation of myofiborblasts via BMP2 mediated- PPARγ phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karmouty-Quintana H, Molina JG, Philip K, Bellocchi C, Gudenkauf B, Wu M, et al. The antifibrotic effect of A2B adenosine receptor antagonism in a mouse model of dermal fibrosis. Arthritis Rheumatol. 2018;70(10):1673–84. https://doi.org/10.1002/art.40554.

    Article  CAS  PubMed  Google Scholar 

  52. • Zhang Y, Zhu H, Layritz F, Luo H, Wohlfahrt T, Chen CW et al. Recombinant adenosine deaminase ameliorates inflammation, vascular disease and fibrosis in preclinical models of systemic sclerosis. Arthritis Rheumatol. 2020. https://doi.org/10.1002/art.41259. This study found recombinant pegylated adenosine deaminase was able to mitigate inflammation, fibrosis and vasculopathy.

  53. Liu C, Yang X, Zhu P, Fujino M, Ito H, Takahashi K, et al. Combination of 5-aminolevulinic acid and iron prevents skin fibrosis in murine sclerodermatous graft-versus-host disease. Exp Dermatol. 2018;27(10):1104–11. https://doi.org/10.1111/exd.13730.

    Article  CAS  PubMed  Google Scholar 

  54. • Skaug B, Khanna D, Swindell WR, Hinchcliff ME, Frech TM, Steen VD et al. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Annals of the Rheumatic Diseases. 2019. https://doi.org/10.1136/annrheumdis-2019-215894. This study found innate and adaptive immune cell gene expression was more prominent in early diffuse SSc compared with later disease.

  55. Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol. 2019;15(5):288–302. https://doi.org/10.1038/s41584-019-0212-z.

    Article  PubMed  Google Scholar 

  56. • Bhandari R, Ball MS, Martyanov V, Popovich D, Schaafsma E, Han S et al. Pro-fibrotic activation of human macrophages in systemic sclerosis Arthritis Rheumatol. 2020;n/a(n/a). https://doi.org/10.1002/art.41243. This study found that activation profile of SSc macrophages was pro-fibrotic.

  57. • Haub J, Roehrig N, Uhrin P, Schabbauer G, Eulberg D, Melchior F, et al. Intervention of inflammatory monocyte activity limits dermal fibrosis. J Invest Dermatol. 2019;139(10):2144–53. https://doi.org/10.1016/j.jid.2019.04.006This study found that activation profile of SSc macrophages was pro-fibrotic.

    Article  CAS  PubMed  Google Scholar 

  58. Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. https://doi.org/10.1038/nri3671.

    Article  CAS  PubMed  Google Scholar 

  59. Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov. 2019;18(7):553–66. https://doi.org/10.1038/s41573-019-0025-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. • Jeljeli M, Riccio LGC, Doridot L, Chêne C, Nicco C, Chouzenoux S, et al. Trained immunity modulates inflammation-induced fibrosis. Nat Commun. 2019;10(1):5670. https://doi.org/10.1038/s41467-019-13636-xThis study highlighted trained immunity as a nascent treatment option for fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kioon MDA, Tripodo C, Fernandez D, Kirou KA, Spiera RF, Crow MK et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med. 2018;10(423). https://doi.org/10.1126/scitranslmed.aam8458.

  62. Kafaja S, Valera I, Divekar AA, Saggar R, Abtin F, Furst DE et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight. 2018;3(9). https://doi.org/10.1172/jci.insight.98380

  63. Rossato M, Affandi AJ, Thordardottir S, Wichers CGK, Cossu M, Broen JCA, et al. Association of MicroRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. 2017;69(9):1891–902. https://doi.org/10.1002/art.40163.

    Article  CAS  PubMed  Google Scholar 

  64. Delaney TA, Morehouse C, Brohawn PZ, Groves C, Colonna M, Yao Y, et al. Type I IFNs regulate inflammation, vasculopathy, and fibrosis in chronic cutaneous graft-versus-host disease. J Immunol. 2016;197(1):42–50. https://doi.org/10.4049/jimmunol.1502190.

    Article  CAS  PubMed  Google Scholar 

  65. Miura S, Asano Y, Saigusa R, Yamashita T, Taniguchi T, Takahashi T, et al. Regulation of skin fibrosis by RALDH1-producing dermal dendritic cells via retinoic acid-mediated regulatory T cell induction: a role in scleroderma. J Dermatol Sci. 2020;97:125–34. https://doi.org/10.1016/j.jdermsci.2020.01.002.

    Article  CAS  PubMed  Google Scholar 

  66. Bradding P, Pejler G. The controversial role of mast cells in fibrosis. Immunol Rev. 2018;282(1):198–231. https://doi.org/10.1111/imr.12626.

    Article  CAS  PubMed  Google Scholar 

  67. Hugle T, White K, van Laar JM. Cell-to-cell contact of activated mast cells with fibroblasts and lymphocytes in systemic sclerosis. Ann Rheum Dis. 2012;71(9):1582. https://doi.org/10.1136/annrheumdis-2011-200809.

    Article  PubMed  Google Scholar 

  68. Hugle T, Hogan V, White KE, van Laar JM. Mast cells are a source of transforming growth factor beta in systemic sclerosis. Arthritis Rheum. 2011;63(3):795–9. https://doi.org/10.1002/art.30190.

    Article  CAS  PubMed  Google Scholar 

  69. Pincha N, Hajam EY, Badarinath K, Batta SPR, Masudi T, Dey R, et al. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis. J Clin Invest. 2018;128(5):1807–19. https://doi.org/10.1172/jci99088.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shimbori C, Upagupta C, Bellaye P-S, Ayaub EA, Sato S, Yanagihara T, et al. Mechanical stress-induced mast cell degranulation activates TGF-β1 signalling pathway in pulmonary fibrosis. Thorax. 2019;74(5):455–65. https://doi.org/10.1136/thoraxjnl-2018-211516.

    Article  PubMed  Google Scholar 

  71. Fujiwara C, Uehara A, Sekiguchi A, Uchiyama A, Yamazaki S, Ogino S, et al. Suppressive regulation by MFG-E8 of latent transforming growth factor β–induced fibrosis via binding to αv integrin: significance in the pathogenesis of fibrosis in systemic sclerosis. Arthritis Rheumatol. 2019;71(2):302–14. https://doi.org/10.1002/art.40701.

    Article  CAS  PubMed  Google Scholar 

  72. Hatley RJD, Macdonald SJF, Slack RJ, Le J, Ludbrook SB, Lukey PT. An αv-RGD integrin inhibitor toolbox: drug discovery insight, challenges and opportunities. Angew Chem (Int Ed Engl). 2018;57(13):3298–321. https://doi.org/10.1002/anie.201707948.

    Article  CAS  Google Scholar 

  73. Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do? Annu Rev Immunol. 2016;34:243–64. https://doi.org/10.1146/annurev-immunol-041015-055402.

    Article  CAS  PubMed  Google Scholar 

  74. Saigusa R, Asano Y, Nakamura K, Hirabayashi M, Miura S, Yamashita T, et al. Systemic sclerosis dermal fibroblasts suppress Th1 cytokine production via galectin-9 overproduction due to Fli1 deficiency. J Investig Dermatol. 2017;137(9):1850–9. https://doi.org/10.1016/j.jid.2017.04.035.

    Article  CAS  PubMed  Google Scholar 

  75. Hsu YA, Chang CY, Lan JL, Li JP, Lin HJ, Chen CS, et al. Amelioration of bleomycin-induced pulmonary fibrosis via TGF-β-induced Smad and non-Smad signaling pathways in galectin-9-deficient mice and fibroblast cells. J Biomed Sci. 2020;27(1):24. https://doi.org/10.1186/s12929-020-0616-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crnkovic S, Egemnazarov B, Damico R, Marsh LM, Nagy BM, Douschan P, et al. Disconnect between fibrotic response and right ventricular dysfunction. Am J Respir Crit Care Med. 2019;199(12):1550–60. https://doi.org/10.1164/rccm.201809-1737OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mor A, Segal Salto M, Katav A, Barashi N, Edelshtein V, Manetti M, et al. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann Rheum Dis. 2019;78(9):1260–8. https://doi.org/10.1136/annrheumdis-2019-215119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Luong VH, Utsunomiya A, Chino T, Doanh LH, Matsushita T, Obara T, et al. Inhibition of the progression of skin inflammation, fibrosis, and vascular injury by blockade of the CX3CL1/CX3CR1 pathway in experimental mouse models of systemic sclerosis. Arthritis Rheumatol. 2019;71(11):1923–34. https://doi.org/10.1002/art.41009.

    Article  CAS  PubMed  Google Scholar 

  79. Arai M, Ikawa Y, Chujo S, Hamaguchi Y, Ishida W, Shirasaki F, et al. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. J Dermatol Sci. 2013;69(3):250–8. https://doi.org/10.1016/j.jdermsci.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  80. • Lande R, Lee EY, Palazzo R, Marinari B, Pietraforte I, Santos GS, et al. CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis. Nat Commun. 2019;10(1):1731. https://doi.org/10.1038/s41467-019-09683-zThis study found that organize DNA into liquid-crystalline supramolecular complexes to enhance TLR9-mediated pDC secretion of interferon-α in SSc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Khanna D BE, Nagaraja V, Koenig A, Khanna P, Young A, Moore J, Fox D, Lafyatis R. Tofacitinib in early diffuse cutaneous systemic sclerosis—results of phase I/II investigator-initiated, double-blind randomized placebo-controlled trial [abstract]. Arthritis Rheumatol 2019;71 (suppl 10). https://acrabstracts.org/abstract/tofacitinib-in-early-diffuse-cutaneous-systemic-sclerosis-results-of-phase-i-ii-investigator-initiated-double-blind-randomized-placebo-controlled-trial/ Accessed June 15, 2020.

  82. Xu D, Mu R, Wei X. The roles of IL-1 family cytokines in the pathogenesis of systemic sclerosis. Front Immunol. 2019;10. https://doi.org/10.3389/fimmu.2019.02025.

  83. Birnhuber A, Crnkovic S, Biasin V, Marsh LM, Odler B, Sahu-Osen A, et al. IL-1 receptor blockade skews inflammation towards Th2 in a mouse model of systemic sclerosis. Eur Respir J. 2019;54(3):1900154. https://doi.org/10.1183/13993003.00154-2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mantero JC, Kishore N, Ziemek J, Stifano G, Zammitti C, Khanna D, et al. Randomised, double-blind, placebo-controlled trial of IL1-trap, rilonacept, in systemic sclerosis. A phase I/II biomarker trial. Clin Exp Rheumatol. 2018;36:S146–S9.

    Google Scholar 

  85. Allanore Y DC, Khanna D, Soubrane C, Esperet C, Marrache F, Bejuit R, Lahmar A, Wung P. Efficacy and safety of romilkimab in diffuse cutaneous systemic sclerosis (dcSSc): a randomized, double-blind, placebo-controlled, 24-week, proof of concept study [abstract]. Arthritis & rheumatology (Hoboken, NJ). 2019;71(suppl 10). https://acrabstracts.org/abstract/efficacy-and-safety-of-romilkimab-in-diffuse-cutaneous-systemic-sclerosis-dcssc-a-randomized-double-blind-placebo-controlled-24-week-proof-of-concept-study/ Accessed June 15, 2020.

  86. Khanna D LC, Kuwana M, Allanore Y, Batalov A, Butrimiene I, Carreira P, Matucci Cerinic M, Distler O, Kaliterna DM, Mihai C, Mogensen M, Olesinska M, Pope JE, Riemekasten G, Rodriguez-Reyna TS, Santos MJ, van Laar J, Spotswood H, Siegel J, Jahreis A, Furst DE, Denton CP. Efficacy and safety of tocilizumab for the treatment of systemic sclerosis: results from a phase 3 randomized controlled trial [abstract]. Arthritis & rheumatology (Hoboken, NJ). 2018;70 (suppl 10). https://acrabstracts.org/abstract/efficacy-and-safety-of-tocilizumab-for-the-treatment-of-systemic-sclerosis-results-from-a-phase-3-randomized-controlled-trial/ Accessed June 15, 2020.

  87. Dufour AM, Borowczyk-Michalowska J, Alvarez M, Truchetet ME, Modarressi A, Brembilla NC, et al. IL-17A dissociates inflammation from fibrogenesis in systemic sclerosis. J Invest Dermatol. 2020;140(1):103–12.e8. https://doi.org/10.1016/j.jid.2019.05.026.

    Article  CAS  PubMed  Google Scholar 

  88. •• Maehara T, Kaneko N, Perugino CA, Mattoo H, Kers J, Allard-Chamard H et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. The Journal of clinical investigation. 2020. https://doi.org/10.1172/JCI131700. This study demonstrated accumulation of CD4+ CTLs in the skin of SSc patients for the first time.

  89. Khanna D, Spino C, Johnson S, Chung L, Whitfield ML, Denton CP, et al. Abatacept in early diffuse cutaneous systemic sclerosis: results of a phase II investigator-initiated, multicenter, double-blind, randomized, placebo-controlled trial. Arthritis Rheumatol (Hoboken, NJ). 2020;72(1):125–36. https://doi.org/10.1002/art.41055.

    Article  CAS  Google Scholar 

  90. Taylor DK, Mittereder N, Kuta E, Delaney T, Burwell T, Dacosta K et al. T follicular helper-like cells contribute to skin fibrosis. Science Translational Medicine. 2018;10(431). https://doi.org/10.1126/scitranslmed.aaf5307

  91. Ricard L, Jachiet V, Malard F, Ye Y, Stocker N, Rivière S, et al. Circulating follicular helper T cells are increased in systemic sclerosis and promote plasmablast differentiation through the IL-21 pathway which can be inhibited by ruxolitinib. Ann Rheum Dis. 2019;78(4):539–50. https://doi.org/10.1136/annrheumdis-2018-214382.

    Article  CAS  PubMed  Google Scholar 

  92. Matsushita T, Kobayashi T, Mizumaki K, Kano M, Sawada T, Tennichi M, et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci Adv. 2018;4(7):eaas9944. https://doi.org/10.1126/sciadv.aas9944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gordon JK, Martyanov V, Franks JM, Bernstein EJ, Szymonifka J, Magro C, et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol (Hoboken, NJ). 2018;70(2):308–16. https://doi.org/10.1002/art.40358.

    Article  CAS  Google Scholar 

  94. Tang R, Yu J, Shi Y, Zou P, Zeng Z, Tang B, et al. Safety and efficacy of rituximab in systemic sclerosis: a systematic review and meta-analysis. Int Immunopharmacol. 2020;83:106389. https://doi.org/10.1016/j.intimp.2020.106389.

    Article  CAS  PubMed  Google Scholar 

  95. Tsou PS. Epigenetic control of scleroderma: current knowledge and future perspectives. Curr Rheumatol Rep. 2019;21(12). https://doi.org/10.1007/s11926-019-0877-y.

  96. Henderson J, Distler J, O'Reilly S. The role of epigenetic modifications in systemic sclerosis: a Druggable target. Trends Mol Med. 2019;25(5):395–411. https://doi.org/10.1016/j.molmed.2019.02.001.

    Article  CAS  PubMed  Google Scholar 

  97. Angiolilli C, Marut W, van der Kroef M, Chouri E, Reedquist KA, Radstake T. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol. 2018;14(11):657–73. https://doi.org/10.1038/s41584-018-0099-0.

    Article  PubMed  Google Scholar 

  98. He Y, Tsou P-S, Khanna D, Sawalha AH. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis. 2018;77(8):1208–18. https://doi.org/10.1136/annrheumdis-2018-213022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang Y, Pötter S, Chen C-W, Liang R, Gelse K, Ludolph I, et al. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis. 2018;77(5):744–51. https://doi.org/10.1136/annrheumdis-2017-212265.

    Article  CAS  PubMed  Google Scholar 

  100. •• Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M et al. TGFβ-induced epigenetic deregulation of SOCS3 facilitates STAT3-signaling to promote fibrosis. J Clin Invest. 2020. https://doi.org/10.1172/JCI122462. This study found that SOCS3 was a negative regulator of TGFβ–STAT3 signaling.

  101. • Wohlfahrt T, Rauber S, Uebe S, Luber M, Soare A, Ekici A, et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature. 2019;566(7744):344–9. https://doi.org/10.1038/s41586-019-0896-xThis study found PU.1 could control fibroblast fate and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bergmann C, Brandt A, Merlevede B, Hallenberger L, Dees C, Wohlfahrt T, et al. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann Rheum Dis. 2018;77(1):150–8. https://doi.org/10.1136/annrheumdis-2017-211501.

    Article  CAS  PubMed  Google Scholar 

  103. Tsou P-S, Campbell P, Amin MA, Coit P, Miller S, Fox DA, et al. Inhibition of EZH2 prevents fibrosis and restores normal angiogenesis in scleroderma. Proc Natl Acad Sci. 2019;116(9):3695–702. https://doi.org/10.1073/pnas.1813006116.

    Article  CAS  PubMed  Google Scholar 

  104. • Shin JY, Beckett JD, Bagirzadeh R, Creamer TJ, Shah AA, McMahan, Z et al. Epigenetic activation and memory at a TGFB2 enhancer in systemic sclerosis. Sci Transl Med. 2019;11(497). https://doi.org/10.1126/scitranslmed.aaw0790. This study found that TGFβ2 signaling might be a potentially targetable mechanism of fibrosis.

  105. Kozlova A, Pachera E, Maurer B, Jüngel A, Distler JHW, Kania G, et al. Regulation of fibroblast apoptosis and proliferation by MicroRNA-125b in systemic sclerosis. Arthritis Rheumatol. 2019;71(12):2068–80. https://doi.org/10.1002/art.41041.

    Article  CAS  PubMed  Google Scholar 

  106. Chouri E, Servaas NH, Bekker CPJ, Affandi AJ, Cossu M, Hillen MR, et al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J Autoimmun. 2018;89:162–70. https://doi.org/10.1016/j.jaut.2017.12.015.

    Article  CAS  PubMed  Google Scholar 

  107. Takata M, Pachera E, Frank-Bertoncelj M, Kozlova A, Jüngel A, Whitfield ML et al. OTUD6B-AS1 might be a novel regulator of apoptosis in systemic sclerosis. Front Immunol. 2019;10(1100). https://doi.org/10.3389/fimmu.2019.01100.

  108. Wasson CW, Abignano G, Hermes H, Malaab M, Ross RL, Jimenez SA, et al. Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann Rheum Dis. 2020;79:507–17. https://doi.org/10.1136/annrheumdis-2019-216542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. •• Weng T, Huang J, Wagner EJ, Ko J, Wu M, Wareing NE et al. Downregulation of CFIm25 amplifies dermal fibrosis through alternative polyadenylation. J Exp Med. 2020;217(2). https://doi.org/10.1084/jem.20181384. This study highlighted alternative polyadenylation (APA) regulation as an important mechanism in SSc.

  110. Altorok N, Tsou P-S, Coit P, Khanna D, Sawalha AH. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis. 2015;74(8):1612–20. https://doi.org/10.1136/annrheumdis-2014-205303.

    Article  CAS  PubMed  Google Scholar 

  111. Ding W, Pu W, Wang L, Jiang S, Zhou X, Tu W, et al. Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4+ and CD8+ T cells. J Investig Dermatol. 2018;138(5):1069–77. https://doi.org/10.1016/j.jid.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  112. Henry TW, Mendoza FA, Jimenez SA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun Rev. 2019;18(11):102396. https://doi.org/10.1016/j.autrev.2019.102396.

    Article  CAS  PubMed  Google Scholar 

  113. Arndt S, Karrer S, Hellerbrand C, Bosserhoff AK. Bone morphogenetic protein-6 inhibits fibrogenesis in scleroderma offering treatment options for fibrotic skin disease. J Invest Dermatol. 2019;139(9):1914–24.e6. https://doi.org/10.1016/j.jid.2019.02.020.

    Article  CAS  PubMed  Google Scholar 

  114. Wei J, Fang F, Lam AP, Sargent JL, Hamburg E, Hinchcliff ME, et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 2012;64(8):2734–45. https://doi.org/10.1002/art.34424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Beyer C, Reichert H, Akan H, Mallano T, Schramm A, Dees C, et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann Rheum Dis. 2013;72(7):1255–8. https://doi.org/10.1136/annrheumdis-2012-202544.

    Article  CAS  PubMed  Google Scholar 

  116. Lafyatis R, Mantero JC, Gordon J, Kishore N, Carns M, Dittrich H, et al. Inhibition of β-catenin signaling in the skin rescues cutaneous adipogenesis in systemic sclerosis: a randomized, double-blind, placebo-controlled trial of C-82. J Investig Dermatol. 2017;137(12):2473–83. https://doi.org/10.1016/j.jid.2017.06.032.

    Article  CAS  PubMed  Google Scholar 

  117. Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum. 2012;64(8):2724–33. https://doi.org/10.1002/art.34444.

    Article  CAS  PubMed  Google Scholar 

  118. Zerr P, Palumbo-Zerr K, Distler A, Tomcik M, Vollath S, Munoz LE, et al. Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood. 2012;120(14):2909–17. https://doi.org/10.1182/blood-2012-01-403428.

    Article  CAS  PubMed  Google Scholar 

  119. Horn A, Kireva T, Palumbo-Zerr K, Dees C, Tomcik M, Cordazzo C, et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann Rheum Dis. 2012;71(5):785–9. https://doi.org/10.1136/annrheumdis-2011-200883.

    Article  CAS  PubMed  Google Scholar 

  120. Liang R, Kagwiria R, Zehender A, Dees C, Bergmann C, Ramming A, et al. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc. Ann Rheum Dis. 2019;78(9):1269–73. https://doi.org/10.1136/annrheumdis-2019-215066.

    Article  CAS  PubMed  Google Scholar 

  121. Xiao H, Zhang GF, Liao XP, Li XJ, Zhang J, Lin H, et al. Anti-fibrotic effects of pirfenidone by interference with the hedgehog signalling pathway in patients with systemic sclerosis-associated interstitial lung disease. Int J Rheum Dis. 2018;21(2):477–86. https://doi.org/10.1111/1756-185X.13247.

    Article  CAS  PubMed  Google Scholar 

  122. •• Park JS, Oh Y, Park YJ, Park O, Yang H, Slania S, et al. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat Commun. 2019;10(1):1128. https://doi.org/10.1038/s41467-019-09101-4This study demonstrated that TLY012 could bind death receptor 5 on myofibroblasts and arrest scleroderma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. •• Tsukui T, Sun K-H, Wetter JB, Wilson-Kanamori JR, Hazelwood LA, Henderson NC, et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun. 2020;11(1):1920. https://doi.org/10.1038/s41467-020-15647-5This study built an atlas of collagen-producing cells and identified Cthrc1+ fibroblasts as drivers of fibrosis in SSc-ILD with single-cell RNA-sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis. 2019;78(10):1379–87. https://doi.org/10.1136/annrheumdis-2018-214865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. •• Matei A-E, Chen C-W, Kiesewetter L, Györfi A-H, Li Y-N, Trinh-Minh T, et al. Vascularised human skin equivalents as a novel in vitro model of skin fibrosis and platform for testing of antifibrotic drugs. Ann Rheum Dis. 2019;78(12):1686–92. https://doi.org/10.1136/annrheumdis-2019-216108This study described vascularised skin equivalents as as a platform for evaluation of antifibrotic drugs.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by The National Key Research and Development program of China 2017YFC0909002, Shanghai Municipal Commission of Health and Family Planning (20204Y0088), National Natural Science Foundation of China (81601401, 81974251) and the pilot project construction of clinical collaboration between Chinese traditional medicine and Western medicine in Shanghai (ZY(2018-2020)-FWTX-1009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangjing Lu or Qingran Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. Figure 2 was created with Biorender.com.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Li, R., Lu, L. et al. Understanding Fibrosis in Systemic Sclerosis: Novel and Emerging Treatment Approaches. Curr Rheumatol Rep 22, 77 (2020). https://doi.org/10.1007/s11926-020-00953-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00953-0

Keywords

Navigation