Skip to main content
Log in

Corrosion and Tribocorrosion Behavior of Ti-B4C Composites Joined with TiCuNi Brazing Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Corrosion behavior of joined Ti-B4C composites was evaluated in 9 g/L NaCl solution using cyclic polarization and electrochemical impedance spectroscopy. Tribocorrosion behavior was investigated by sliding against an alumina ball under open-circuit potential and potentiodynamic polarization. The results showed that joining did not negatively affect the corrosion behavior of the composites. Regarding tribocorrosion, while joining did not significantly influence the coefficient of friction and total wear volume loss, it resulted in slightly increased electrochemical activity under sliding. These results showed that brazing may be considered as a simple and low-cost technique for joining Ti-B4C composites to be operated in tribocorrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Chawla and K.K. Chawla, Metal Matrix Composites, Kluwer Academic Publishers, Boston, 2006

    Google Scholar 

  2. K. Morsi and V.V. Patel, Processing and Properties of Titanium-Titanium Boride (TiBw) Matrix Composites—A Review, J. Mater. Sci., 2007, 42, p 2037–2047

    Article  Google Scholar 

  3. F. Toptan, A. Rego, A.C. Alves, and A. Guedes, Corrosion and Tribocorrosion Behavior of Ti-B4C Composite Intended for Orthopaedic Implants, J. Mech. Behav. Biomed. Mater., 2016, 61, p 152–163. https://doi.org/10.1016/j.jmbbm.2016.01.024

    Article  Google Scholar 

  4. E. Gordo, R.G. das Neves, B. Ferrari, A. Jiménez-Morales, A. Lima, A.C. Alves, A.M. Pinto, and F. Toptan, Corrosion and Tribocorrosion Behavior of Ti-Alumina Composites, Key Eng. Mater., 2016, 704, p 28–37. https://doi.org/10.4028/www.scientific.net/KEM.704.28

    Article  Google Scholar 

  5. J.I. Silva, A.C. Alves, A.M. Pinto, and F. Toptan, Corrosion and Tribocorrosion Behavior of Ti-TiB-TiNx In-Situ Hybrid Composite Synthesized by Reactive Hot Pressing, J. Mech. Behav. Biomed. Mater., 2017, 74, p 195–203

    Article  Google Scholar 

  6. L. Rangaraj, K. Barman, C. Divakar, and V. Jayaram, Reactive Hot Pressing of Ti-B-C and Ti-C at 1200 °C, Ceram. Int., 2013, 39, p 5955–5961

    Article  Google Scholar 

  7. W.P. Weng and T.H. Chuang, Interfacial Characteristics for Brazing of Aluminum Matrix Composites with Al-12Si Filler Metals, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1997, 28(12), p 2673–2682

    Article  Google Scholar 

  8. M. Aydin, R. Gürler, and M. Türker, The Diffusion Welding of 7075Al-3%SiC Particles Reinforced Composites, Phys. Met. Metallogr., 2009, 107(2), p 206–210

    Article  Google Scholar 

  9. A.A.M. da Silva, A. Meyer, J.F. dos Santos, C.E.F. Kwietniewski, and T.R. Strohaecker, Mechanical and Metallurgical Properties of Friction-Welded TiC Particulate Reinforced Ti-6Al-4V, Compos. Sci. Technol., 2004, 64(10–11), p 1495–1501

    Article  Google Scholar 

  10. J.C. Yan, H.B. Xu, L. Shi, X.L. Wang, and S.Q. Yang, Vibration Assisted Brazing of SiCp/A356 Composites: microstructure and Mechanical Behaviour, Sci. Technol. Weld. Join., 2008, 13(8), p 760–764. https://doi.org/10.1179/136217108X333318

    Article  Google Scholar 

  11. M.M. Schwartz, Introduction to Brazing and Soldering, ASM Handbook Volume 6: Welding, Brazing, and Soldering, D.L. Olson, T.A. Siewert, S. Liu, and G.R. Edwards, Ed., ASM International, Materials Park, OH, 1993, p 109–114

  12. J. Ba, X.H. Zheng, R. Ning, J.H. Lin, J.L. Qi, J. Cao, W. Cai, and J.C. Feng, Brazing of SiO2-BN Modified with In Situ Synthesized CNTs to Ti6Al4V Alloy by TiZrNiCu Brazing Alloy, Ceram. Int., 2018, 44(9), p 10210–10214

    Article  Google Scholar 

  13. G.H. Han, Y.F. Wang, H.Y. Zhao, X.G. Song, J. Cao, and J.C. Feng, Vacuum Brazing of TZM Alloy to ZrC Particle Reinforced W Composite Using Ti-28Ni Eutectic Brazing Alloy, Int. J. Refract. Met. Hard Mater., 2017, 69, p 240–246

    Article  Google Scholar 

  14. X.R. Song, H.J. Li, X. Zeng, and L. Zhang, Brazing of C/C Composites to Ti6Al4V Using Graphene Nanoplatelets Reinforced TiCuZrNi Brazing Alloy, Mater. Lett., 2016, 183, p 232–235. https://doi.org/10.1016/j.matlet.2016.07.111

    Article  Google Scholar 

  15. X.R. Song, H.J. Li, and X. Zeng, Brazing of C/C Composites to Ti6Al4V Using Multiwall Carbon Nanotubes Reinforced TiCuZrNi Brazing Alloy, J. Alloys Compd., 2016, 664, p 175–180

    Article  Google Scholar 

  16. Z.W. Yang, L.X. Zhang, P. He, and J.C. Feng, Interfacial Structure and Fracture Behavior of TiB Whisker-Reinforced C/SiC Composite and TiAl Joints Brazed with Ti-Ni-B Brazing Alloy, Mater. Sci. Eng., A, 2012, 532, p 471–475

    Article  Google Scholar 

  17. Z. Doni, A.C. Alves, F. Toptan, J.R. Gomes, A. Ramalho, M. Buciumeanu, L. Palaghian, and F.S. Silva, Dry Sliding and Tribocorrosion Behaviour of Hot Pressed CoCrMo Biomedical Alloy as Compared with the Cast CoCrMo and Ti6Al4V Alloys, Mater. Des., 2013, 52, p 47–57

    Article  Google Scholar 

  18. M. Rafiei, M. Salehi, and M. Shamanian, Formation Mechanism of B4C-TiB2-TiC Ceramic Composite Produced by Mechanical Alloying of Ti-B4C Powders, Adv. Powder Technol., 2014, 25(6), p 1754–1760

    Article  Google Scholar 

  19. M. Frary, S. Abkowitz, S.M. Abkowitz, and D.C. Dunand, Microstructure and Mechanical Properties of Ti/W and Ti-6Al-4V/W Composites Fabricated by Powder-Metallurgy, Mater. Sci. Eng., A, 2003, 344(1–2), p 103–112

    Article  Google Scholar 

  20. B.T.M.T. Godfrey, P.S. Goodwin, and C.M. Ward-close, Titanium Particulate Metal Matrix Composites, Adv. Eng. Mater., 2000, 4(3), p 85–92

    Article  Google Scholar 

  21. P. Villars, A. Prince, and H. Okamoto, Eds., Handbook of Ternary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1995

  22. S.J. Lee, S.K. Wu, and R.Y. Lin, Infrared Joining of TiAl Intermetallics Using Ti-15Cu-15Ni Foil—I. The Microstructure Morphologies of Joint Interface, Acta Mater., 1998, 46(4), p 1283–1295

    Article  Google Scholar 

  23. L. Gomes and A. Guedes, Influence of the Brazing Filler on the Microstructure of Ti6Al4V Joints, Microsc. Microanal., 2016, 22(S4), p 40–41

    Article  Google Scholar 

  24. V.G. Pina, V. Amigó, and A.I. Muñoz, Microstructural, Electrochemical and Tribo-electrochemical Characterisation of Titanium-Copper Biomedical Alloys, Corros. Sci., 2016, 109, p 115–125

    Article  Google Scholar 

  25. J.M. Shi, L.X. Zhang, Q. Chang, Z. Sun, and J.C. Feng, Strengthening the ZrC-SiC Ceramic and TC4 Alloy Brazed Joint Using Laser Additive Manufactured Functionally Graded Material Layers, Ceram. Int., 2018, 44(10), p 11060–11069

    Article  Google Scholar 

  26. X.-G. Song, T. Zhang, Y.-J. Feng, C.-W. Tan, J. Cao, and W.-C. Zhang, Brazing of TiBw/TC4 Composite and Ti60 Alloy Using TiZrNiCu Amorphous Filler Alloy, Trans. Nonferrous Met. Soc. China, 2017, 27(10), p 2193–2201

    Article  Google Scholar 

  27. J.C. Schuster and G. Cacciamani, Cu-Ni-Ti (Copper-Nickel-Titanium), Light Metals Systems. Part 4, G. Effenber and S. Ilyenko, Ed., Springer, New York, 2006, p 266–283

    Google Scholar 

  28. F. Toptan, A.C. Alves, M.A. Ferreira, C.I. da Silva Oliveira, and A.M.P. Pinto, Effect of HAP Decomposition on the Corrosion Behavior of Ti-HAP Biocomposites, Mater. Corros., 2018, 69(9), p 1292–1299

    Article  Google Scholar 

  29. F. Toptan, A. Rego, A.C. Alves, and A. Guedes, Corrosion and Tribocorrosion Behavior of Ti-B4C Composite Intended for Orthopaedic Implants, J. Mech. Behav. Biomed. Mater., 2016, 61, p 152–163

    Article  Google Scholar 

  30. A.M. Ribeiro, A.C. Alves, F.S. Silva, and F. Toptan, Electrochemical Characterization of Hot Pressed CoCrMo-HAP Biocomposite in a Physiological Solution, Mater. Corros., 2015, 66(8), p 790–795

    Article  Google Scholar 

  31. S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, and J.C.S. Fernandes, Corrosion Behaviour of Al/Al3Ti and Al/Al3Zr Functionally Graded Materials Produced by Centrifugal Solid-Particle Method: Influence of the Intermetallics Volume Fraction, Corros. Sci., 2011, 53(6), p 2058–2065. https://doi.org/10.1016/j.corsci.2011.02.010

    Article  Google Scholar 

  32. E. Zhang, S. Li, J. Ren, L. Zhang, and Y. Han, Effect of Extrusion Processing on the Microstructure, Mechanical Properties, Biocorrosion Properties and Antibacterial Properties of Ti-Cu Sintered Alloys, Mater. Sci. Eng. C, 2016, 69, p 760–768. https://doi.org/10.1016/j.msec.2016.07.051

    Article  Google Scholar 

  33. R. Zhang, H. Wang, X. Xing, Z. Yuan, S. Yang, Z. Han, and G. Yuan, Effects of Ni Addition on Tribocorrosion Property of TiCu Alloy, Tribol. Int., 2017, 107, p 39–47. https://doi.org/10.1016/j.triboint.2016.11.010

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by FCT with the reference project UID/EEA/04436/2019, M-ERA-NET/0001/2015, and Proc.º 4.4.1.00 FCT/CAPES projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Toptan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, J.M., Alves, A.C., Toptan, F. et al. Corrosion and Tribocorrosion Behavior of Ti-B4C Composites Joined with TiCuNi Brazing Alloy. J. of Materi Eng and Perform 28, 4972–4982 (2019). https://doi.org/10.1007/s11665-019-04217-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04217-6

Keywords

Navigation