Skip to main content
Log in

A Review on Fundamentals, Design and Optimization to High ZT of Thermoelectric Materials for Application to Thermoelectric Technology

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Thermoelectricity has been proven as a potential technology for the conversion of waste heat into usable electricity. It involves primarily three parameters, namely the Seebeck coefficient, electrical conductivity, and thermal conductivity. However, there are many other interrelated parameters, such as carrier concentration, mobility, effective mass, multi-valley bands, relaxation time, reduced Fermi energy, phonon modes, scattering parameters, and the number of neighbouring atoms in a given structure. The understanding of these parameters is equally important in order to optimize a high figure of merit (ZT). This article addresses the basics of electronic and thermal transport with the help of Boltzmann transport equation, fundamental concepts for the design of thermoelectric (TE) materials, and implementation of several strategies such as alloying, the phonon-glass electron-crystal (PGEC) approach, band engineering and nanostructuring to optimize the ZT of materials, and finally ends with a discussion of the future prospects of heat extraction through different heat sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

reproduced from Ref. 57 with permission from Elsevier, copyright 2009”.

Fig. 4

reproduced from Ref. 8 with permission from John Wiley and Sons, copyright 2009”.

Fig. 5

reproduced from Ref. 8 with permission from John Wiley and Sons, copyright 2009”.

Fig. 6

reproduced from ref.97 with permission from John Wiley and Sons, copyright 2017”.

Fig. 7
Fig. 8

reproduced from Ref. 27 with permission from American Physical Society, copyright 2008”. (b) Seebeck coefficient enhancement on addition of SiC in Yb0.3Co4Sb12, InSb in In0.4Co4Sb12, Si in Bi0.4Sb1.6Te3, and ZnO in SnTe. Data from Refs. 115,116,117,118 (b) Power factor enhancement on addition of W in HH, SiC in Yb0.3Co4Sb12, and Sb203 in Bi0.5Sb1.5Te3 as a function of temperature. Data from Refs. 113, 115, 119

Fig. 9
Fig. 10

reproduced from Ref. 135 with permission from the American Chemical Society, copyright 2020”.

Fig. 11
Fig. 12

reproduced from Ref.162 with permission from John Wiley and Sons, copyright 2007”.

Fig. 13

Similar content being viewed by others

Abbreviations

ZT :

Thermoelectric figure of merit

\(\alpha\) :

Seebeck coefficient

\(\sigma\) :

Electrical conductivity

T :

Temperature

k :

Thermal conductivity

f :

Non-equilibrium distribution function

r :

Position vector of electrons

k :

Wave vector of electrons

t :

Time

f o :

Equilibrium distribution function

\(\tau\) :

Relaxation time

E :

Electron energy

E F :

Fermi energy

K B :

Boltzmann constant

E :

External electric field

v :

Carrier velocity

e :

Electron charge

n :

Carrier concentration

g(E) :

Electron Density of states

J :

Charge current density

Q :

Heat current density

m d :

Density of states effective mass

\(\hbar\) :

Reduced Planck's constant

\(\pi\) :

Pi

\(\mu\) :

Mobility of carriers

k e :

Electronic thermal conductivity

L o :

Lorentz number

k bi :

Bipolar thermal conductivity

f p :

Perturbed distribution function

f po :

Equilibrium distribution function

k l :

Lattice thermal conductivity

C l :

Lattice heat capacity

l :

Mean free path of phonons

x :

Reduced energy

\(\eta\) :

Reduced Fermi energy

f 1/2 :

Fermi integral of order ½

\(\gamma\) :

Degeneracy of band extrema

V o :

Average volume of a unit cell

f i :

The fraction of unit cells with mass \({\text{M}}_{{\text{i}}}\)

M i :

The mass of a unit cell

M :

The average mass of all unit cells

E g :

Band gap

\(m_{b}^{*}\) :

Single valley band effective mass

N v :

Band degeneracy

T H :

Hot side temperature of TE module

T C :

Cold side temperature of TE module

ZT avg :

Average ZT

m * :

Effective mass

m c :

Conductivity inertial effective mass

r :

Scattering parameter

\(m_{i}\) :

The effective mass of carriers in ith direction

\(g_{ph}\) :

Phonon density of states

q l :

Heat flux

v :

Group velocity of phonons

\(\overline{E}\) :

Energy of lattice vibrations

\(\eta_{TEG}\) :

Efficiency of TEG

\(\check{r}\) :

Position vector of phonons

\(\check{k}\) :

Wave vector of phonons

f :

Planck Distribution function

\(U_{o}\) :

Total voltage of TEG

\(\alpha_{P - N}\) :

Relative Seebeck Coefficient

\( T\) :

Temperature difference between two sides of TEG

I :

Total current in the circuit

R g :

Internal resistance of TEG

R m :

Load resistance

P :

Power output

\(Q_{in}\) :

Inflow heat at hot side of TEG

References

  1. T. Kåberger, Glob. Energy Interconnect. 1, 48 (2018).

    Google Scholar 

  2. P.G.V. Sampaio, and M.O.A. González, Renew. Sustain. Energy Rev. 74, 590 (2017).

    Article  Google Scholar 

  3. S. Priya, H.-C. Song, Y. Zhou, R. Varghese, A. Chopra, S.-G. Kim, I. Kanno, L. Wu, D.S. Ha, J. Ryu, and R.G. Polcawich, Energy Harvest. Syst. 4, 3 (2017).

    Article  Google Scholar 

  4. S. M. Pourkiaei, M. H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, L. Chen, M. A. Pour Yazdi, and R. Kumar, Thermoelectric Cooler and Thermoelectric Generator Devices: A Review of Present and Potential Applications, Modeling and Materials, Energy 186, 115849 (2019).

  5. A. Anderson, and B. Rezaie, Appl. Energy 248, 18 (2019).

    Article  Google Scholar 

  6. L. Lin, Y.F. Zhang, H.B. Liu, J.H. Meng, W.H. Chen, and X.D. Wang, Appl. Therm. Eng. 160, 114087 (2019).

    Article  Google Scholar 

  7. Y. Ismail and A. Alaskalany, Thermoelectric Devices: Cooling and Power Generation, ArXiv Prepr. ArXiv1403.3836 (2014).

  8. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angewandte Chemie - International Edition 48, 8616 (2009).

    Article  CAS  Google Scholar 

  9. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Article  CAS  Google Scholar 

  10. I. Terasaki, Introduction to Thermoelectricity, in Materials for Energy Conversion Devices: A Volume in Woodhead Publishing Series in Electronic and Optical Materials 339 (2005).

  11. G.J. Snyder, and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  12. A. Feldhoff, Energy Harvest. Syst. 2, 5 (2015).

    Google Scholar 

  13. S. Siouane, S. Jovanović, and P. Poure, Energies 10, 386 (2017).

    Article  Google Scholar 

  14. M. von Lukowicz, E. Abbe, T. Schmiel, and M. Tajmar, Energies 9, 541 (2016).

    Article  CAS  Google Scholar 

  15. J. Yang, and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  CAS  Google Scholar 

  16. Y. Tu, W. Zhu, T. Lu, and Y. Deng, Appl. Energy 206, 1194 (2017).

    Article  CAS  Google Scholar 

  17. I. Malik, T. Srivastava, K. K. Surthi, C. Gayner, and K. K. Kar, Mater. Chem. Phys. 255, 123598 (2020).

  18. T.-R. Wei, C.-F. Wu, F. Li, and J.-F. Li, J. Mater. 4, 304 (2018).

    Google Scholar 

  19. Z.-H. Ge, L.-D. Zhao, D. Wu, X. Liu, B.-P. Zhang, J.-F. Li, and J. He, Mater. Today 19, 227 (2016).

    Article  CAS  Google Scholar 

  20. Y. You, X. Su, S. Hao, W. Liu, Y. Yan, T. Zhang, M. Zhang, C. Wolverton, M.G. Kanatzidis, and X. Tang, J. Mater. Chem. A 6, 15123 (2018).

    Article  CAS  Google Scholar 

  21. J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T.C. Chasapis, G.J. Snyder, X. Zhao, and T. Zhu, Adv. Energy Mater. 8, 1701313 (2018).

    Article  CAS  Google Scholar 

  22. S. Mukherjee, R. Parasuraman, A. M. Umarji, G. Rogl, P. Rogl, and K. Chattopadhyay, J. Alloys Compd. 817, 152729 (2020).

  23. J. Khaliq, Q. Jiang, J. Yang, K. Simpson, H. Yan, and M.J. Reece, Scr. Mater. 72–73, 63 (2014).

    Article  CAS  Google Scholar 

  24. L.M. Daniels, S.N. Savvin, M.J. Pitcher, M.S. Dyer, J.B. Claridge, S. Ling, B. Slater, F. Corà, J. Alaria, and M.J. Rosseinsky, Energy Environ. Sci. 10, 1917 (2017).

    Article  CAS  Google Scholar 

  25. Y. Liu, H. Xie, C. Fu, G.J. Snyder, X. Zhao, and T. Zhu, J. Mater. Chem. A 3, 22716 (2015).

    Article  CAS  Google Scholar 

  26. C. Gayner, and Y. Amouyal, Adv. Funct. Mater. 30, 1901789 (2020).

    Article  CAS  Google Scholar 

  27. S. V. Faleev and F. Léonard, Phys. Rev. B - Condens. Matter Mater. Phys. 77, 214304 (2008).

  28. R. Moshwan, W. Di Liu, X. L. Shi, Y. P. Wang, J. Zou, and Z. G. Chen, Nano Energy 165, 104056 (2019).

  29. K. Imasato, S.D. Kang, S. Ohno, and G.J. Snyder, Mater. Horizons 5, 59 (2018).

    Article  CAS  Google Scholar 

  30. A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitskiy, S.D. Kaloshkin, A.I. Voronin, and V.V. Khovaylo, Scr. Mater. 96, 9 (2015).

    Article  CAS  Google Scholar 

  31. Z.Z. Luo, S. Cai, S. Hao, T.P. Bailey, X. Su, I. Spanopoulos, I. Hadar, G. Tan, Y. Luo, J. Xu, C. Uher, C. Wolverton, V.P. Dravid, Q. Yan, and M.G. Kanatzidis, J. Am. Chem. Soc. 141, 16169 (2019).

    Article  CAS  Google Scholar 

  32. R. He, T. Zhu, Y. Wang, U. Wolff, J.-C. Jaud, A. Sotnikov, P. Potapov, D. Wolf, P. Ying, M. Wood, Z. Liu, L. Feng, N.P. Rodriguez, G.J. Snyder, J.C. Grossman, K. Nielsch, and G. Schierning, Energy Environ. Sci. 13, 5165 (2020).

    Article  CAS  Google Scholar 

  33. A. Bhardwaj, N. S. Chauhan, B. Sancheti, G. N. Pandey, T. D. Senguttuvan, and D. K. Misra, Phys. Chem. Chem. Phys. 17, 30090 (2015).

  34. L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, Mater. Res. Bull. 76, 107 (2016).

    Article  CAS  Google Scholar 

  35. B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu, and J. He, Energy Environ. Sci. 13, 2106 (2020).

    Article  CAS  Google Scholar 

  36. Y. Wang, W. Di Liu, X. L. Shi, M. Hong, L. J. Wang, M. Li, H. Wang, J. Zou, and Z. G. Chen, Chem. Eng. J. 391, 123513 (2020).

  37. S. Bano, M. V. G. Padmavati, A. Singh, M. Gandhi, M. Upadhyay, S. R. Dhakate, and D. K. Misra, Mater. Sci. Semicond. Process. 120, 105292 (2020).

  38. P. Jood, J.P. Male, S. Anand, Y. Matsushita, Y. Takagiwa, M.G. Kanatzidis, G.J. Snyder, and M. Ohta, J. Am. Chem. Soc. 142, 15464 (2020).

    Article  CAS  Google Scholar 

  39. B. Xiang, J. Liu, J. Yan, M. Xia, Q. Zhang, L. Chen, J. Li, X.Y. Tan, Q. Yan, and Y. Wu, J. Mater. Chem. A 7, 18458 (2019).

    Article  CAS  Google Scholar 

  40. T. Fu, J. Xin, T. Zhu, J. Shen, T. Fang, and X. Zhao, Sci. Bull. 64, 1024 (2019).

    Article  CAS  Google Scholar 

  41. G. Xie, Z. Li, T. Luo, H. Bai, J. Sun, Y. Xiao, L. D. Zhao, J. Wu, G. Tan, and X. Tang, Nano Energy 69, 104395 (2020).

  42. S. Zhang, S. Xu, H. Gao, Q. Lu, T. Lin, P. He, and H. Geng, Characterization of Multiple-Filled Skutterudites with High Thermoelectric Performance, J. Alloys Compd. 814, 152272 (2020).

  43. D. Qin, B. Cui, L. Yin, X. Zhao, Q. Zhang, J. Cao, W. Cai, and J. Sui, Tin ACS Appl. Mater. Interfaces 11, 25133 (2019).

    Article  CAS  Google Scholar 

  44. G. Tan, L.-D. Zhao, and M.G. Kanatzidis, Chem. Rev. 116, 12123 (2016).

    Article  CAS  Google Scholar 

  45. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, and D.J. Singh, Npj Comput. Mater. 2, 1 (2016).

    Article  CAS  Google Scholar 

  46. J. Mao, Z. Liu, J. Zhou, H. Zhu, Q. Zhang, G. Chen, and Z. Ren, Adv. Phys. 67, 69 (2018).

    Article  Google Scholar 

  47. J. He and T. M. Tritt, Science (80-. ). 357, (2017).

  48. H. Alam, and S. Ramakrishna, Nano Energy 2, 190 (2013).

    Article  CAS  Google Scholar 

  49. L. Yang, Z. Chen, M.S. Dargusch, and J. Zou, Adv. Energy Mater. 8, 1701797 (2018).

    Article  CAS  Google Scholar 

  50. S. Lv, Z. Qian, D. Hu, X. Li, and W. He, Energies 13, 3142 (2020).

    Article  CAS  Google Scholar 

  51. R. He, G. Schierning, and K. Nielsch, Adv. Mater. Technol. 3, 1700256 (2018).

    Article  CAS  Google Scholar 

  52. P. Patil, and P. Patil, Int. J. Emerg. Technol. Adv. Eng. 3, 681 (2013).

    Google Scholar 

  53. M.A. Zoui, S. Bentouba, J.G. Stocholm, and M. Bourouis, Energies 13, 3606 (2020).

    Article  CAS  Google Scholar 

  54. D. Champier, Energy Convers. Manag. 140, 167 (2017).

    Article  Google Scholar 

  55. CRC Handbook of Thermoelectrics (2018).

  56. H. Lee, Thermoelectrics: Design and Materials (John Wiley & Sons, 2016).

  57. P. Pichanusakorn, and P. Bandaru, Mater. Sci. Eng. R. Rep. 67, 19 (2010).

    Article  Google Scholar 

  58. A. Cantarero and F. X. Àlvarez, Thermoelectric Effects: Semiclassical and Quantum Approaches from the Boltzmann Transport Equation, Nanoscale Thermoelectrics. Lecture Notes in Nanoscale Science and Technology, 16, 1 in (2014).

  59. J. S. Galsin, Transport Phenomena, in Solid State Physics (2019).

  60. A. Mehdizadeh Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Thermoelectric Power Factor: Enhancement Mechanisms and Strategies for Higher Performance Thermoelectric Materials, Materials Science and Engineering R: Reports. 97, 1 (2015).

  61. Y. Lin, J. Lan, and C. Nan, Electron Transport Model in Nano Bulk Thermoelectrics, in Oxide Thermoelectric Materials (2019).

  62. G. S. Nolas and H. J. Goldsmid, Thermal Conductivity of Semiconductors, in Thermal Conductivity (Springer, 2004), pp. 105–121.

  63. J.-H. Bahk, and A. Shakouri, Appl. Phys. Lett. 105, 52106 (2014).

    Article  CAS  Google Scholar 

  64. X. Wang and Z. M. Wang, Nanoscale Thermoelectrics, Vol. 16 (Springer, 2014).

  65. Z. Tian, S. Lee, and G. Chen, Annu. Rev. Heat Transf. 17, 425 (2014).

    Article  Google Scholar 

  66. Ö. C. Yelgel and G. P. Srivastava, Thermoelectric Properties of N-Type Bi 2 (Te 0.85 Se 0.15) 3 Single Crystals Doped with CuBr and SbI 3, Phys. Rev. B 85, 125207 (2012).

  67. W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, and G. Tang, ACS Appl. Mater. Interfaces 11, 45133 (2019).

    Article  CAS  Google Scholar 

  68. Y.-H. Lin, J. Lan, and C. Nan, Oxide Thermoelectric Materials (Wiley Online Library, 2019).

  69. P. Norouzzadeh, and D. Vashaee, Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  70. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge university press, 2009).

  71. P. Pichanusakorn and P. R. Bandaru, Appl. Phys. Lett. 94, 223108 (2009).

  72. Y. Mishima, Y. Kimura, and S. Wng Kim, Enhancement of Thermoelectric Figure of Merit through Nanostructural Control on Intermetallic Semiconductors toward High-Temperature Applications, in Nanomaterials (2006).

  73. G. A. Slack, Design Concepts for Improved Thermoelectric Materials, in Materials Research Society Symposium Proceedings, Vol. 478, 47 (Materials Research Society, 1997).

  74. G. S. Nolas, J. Sharp, and H. J. Goldsmid, The Phonon—Glass Electron-Crystal Approach to Thermoelectric Materials Research, in (2001).

  75. G. Mahan and B. Sales, Thermoelectric Materials: New Approaches to an Old Problem., Phys. Today 50, 42 (1997).

  76. B.C. Sales, D.G. Mandrus, and B.C. Chakoumakos, Mater. Res. Part Two 70, 1 (2001).

    CAS  Google Scholar 

  77. H.O. Pritchard, and H.A. Skinner, Chem. Rev. 55, 745 (1955).

    Article  CAS  Google Scholar 

  78. O. Polat, Z. Durmus, F.M. Coskun, M. Coskun, and A. Turut, J. Mater. Sci. 53, 3544 (2018).

    Article  CAS  Google Scholar 

  79. H.C. Kandpal, C. Felser, and R. Seshadri, J. Phys. D. Appl. Phys. 39, 776 (2006).

    Article  CAS  Google Scholar 

  80. X.H. Yang, J. Alloys Compd. 594, 70 (2014).

    Article  CAS  Google Scholar 

  81. T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).

    Article  CAS  Google Scholar 

  82. J. Xin, Y. Tang, Y. Liu, X. Zhao, H. Pan, and T. Zhu, Npj Quantum Mater. 3, 1 (2018).

    Article  Google Scholar 

  83. L. Min, P. Ying, X. Li, and J. Cui, J. Phys. D. Appl. Phys. 53, 75304 (2019).

    Article  CAS  Google Scholar 

  84. J. Cui, M. Wang, X. Xu, Y. Chen, and J. He, J. Appl. Phys. 126, 25108 (2019).

    Article  CAS  Google Scholar 

  85. E. Rausch, B. Balke, T. Deschauer, S. Ouardi, and C. Felser, APL Mater. 3, 41516 (2015).

    Article  CAS  Google Scholar 

  86. L. Song, J. Zhang, and B.B. Iversen, J. Mater. Chem. A 5, 4932 (2017).

    Article  CAS  Google Scholar 

  87. A. Kumar, K. M. Chaturvedi, S. Bano, B. Govind, and D. K. Misra, Mater. Chem. Phys. 258, 123915 (2021).

  88. T. Zhu, K. Swaminathan-Gopalan, K. Stephani, and E. Ertekin, Phys. Rev. B 97, 174201 (2018).

  89. Z. Chen, X. Guo, J. Tang, F. Xiong, W. Li, Y. Chen, and R. Ang, ACS Appl. Mater. Interfaces 11, 26093 (2019).

    Article  CAS  Google Scholar 

  90. Z. Du, X. Chen, and M. Yan, J. Solid State Chem. 271, 67 (2019).

  91. D. K. Bhat and U. S. Shenoy, Zn: Mater. Today Phys. 11, 100158 (2019).

  92. D. Li, J. M. Li, J. C. Li, Y. S. Wang, J. Zhang, X. Y. Qin, Y. Cao, Y. S. Li, and G. D. Tang, J. Mater. Chem. A 6, 9642 (2018).

  93. S. Ahmad, A. Singh, S. Bhattacharya, M. Navaneethan, R. Basu, R. Bhatt, P. Sarkar, K.N. Meshram, K.P. Muthe, and S. Vitta, ACS Appl. Energy Mater. 3, 7113 (2020).

    Article  CAS  Google Scholar 

  94. S. Ghosh, S.M. Valiyaveettil, G. Shankar, T. Maity, K.H. Chen, K. Biswas, S. Suwas, and R.C. Mallik, ACS Appl. Energy Mater. 3, 635 (2020).

    Article  CAS  Google Scholar 

  95. A. Kumar, K.M. Chaturvedi, A. Bhardwaj, B. Govind, S. Bano, and D.K. Misra, Mater. Renew. Sustain. Energy 9, 1 (2020).

    Article  Google Scholar 

  96. G.A. Slack, Phys. Rev. 105, 829 (1957).

    Article  CAS  Google Scholar 

  97. T. Zhu, Y. Liu, C. Fu, J.P. Heremans, J.G. Snyder, and X. Zhao, Adv. Mater. 29, 1605884 (2017).

    Article  CAS  Google Scholar 

  98. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, (1957).

  99. X. Tang, B. Zhang, X. Zhang, S. Wang, X. Lu, G. Han, G. Wang, and X. Zhou, ACS Appl. Mater. Interfaces 12, 8359 (2020).

    Article  CAS  Google Scholar 

  100. C. Li, H. Wu, B. Zhang, H. Zhu, Y. Fan, X. Lu, X. Sun, X. Zhang, G. Wang, and X. Zhou, ACS Appl. Mater. Interfaces 12, 8446 (2020).

    Article  CAS  Google Scholar 

  101. K. Zhang, H. Wang, W. Su, T. Wang, X. Wang, T. Chen, T. Huo, F. Dang, M. Dong, and C. Wang, J. Phys. D. Appl. Phys. 53, 245501 (2020).

  102. F. Serrano-Sánchez, T. Luo, J. Yu, W. Xie, C. Le, G. Auffermann, A. Weidenkaff, T. Zhu, X. Zhao, and J.A. Alonso, J. Mater. Chem. A 8, 14822 (2020).

    Article  Google Scholar 

  103. G. A. Slack, New Materials and Performance Limits for Thermoelectric Cooling, CRC Handb. Thermoelectr. 407 (1995).

  104. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  CAS  Google Scholar 

  105. G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178 (1998).

    Article  CAS  Google Scholar 

  106. C. Uher, Skutterudites: Prospective Novel Thermoelectrics, in Semiconductors and Semimetals, Vol. 69, 139 (Elsevier, 2001).

  107. W.J. Xie, Y.G. Yan, S. Zhu, M. Zhou, S. Populoh, K. Gałązka, S.J. Poon, A. Weidenkaff, J. He, and X.F. Tang, Acta Mater. 61, 2087 (2013).

    Article  CAS  Google Scholar 

  108. M. Liu and X. Y. Qin, Appl. Phys. Lett. 101, 132103 (2012).

  109. W.J. Xie, J. He, S. Zhu, X.L. Su, S.Y. Wang, T. Holgate, J.W. Graff, V. Ponnambalam, S.J. Poon, and X.F. Tang, Acta Mater. 58, 4705 (2010).

    Article  CAS  Google Scholar 

  110. W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. Poon, and T.M. Tritt, Nanomaterials 2, 379 (2012).

    Article  CAS  Google Scholar 

  111. R. Yaqub, P. Sahoo, J. Makongo, N. Takas, P. F. P. Poudeu, and K. L. Stokes, Sci. Adv. Mater. 3, 633 (2011).

  112. J. P. A. Makongo, D. K. Misra, J. R. Salvador, N. J. Takas, G. Wang, M. R. Shabetai, A. Pant, P. Paudel, C. Uher, and K. L. Stokes, J. Solid State Chem. 184, 2948 (2011).

  113. H.B. Kang, B. Poudel, W. Li, H. Lee, U. Saparamadu, A. Nozariasbmarz, M.G. Kang, A. Gupta, J.J. Heremans, and S. Priya, Mater. Today 36, 63 (2020).

    Article  CAS  Google Scholar 

  114. N. Neophytou, and M. Thesberg, J. Comput. Electron. 15, 16 (2016).

    Article  CAS  Google Scholar 

  115. Z. Zhou, J. Li, Y. Fan, Q. Zhang, X. Lu, S. Fan, K. Kikuchi, N. Nomura, A. Kawasaki, and L. Wang, Scr. Mater. 162, 166 (2019).

    Article  CAS  Google Scholar 

  116. S. Ghosh, S. Meledath Valiyaveettil, G. Shankar, T. Maity, K.-H. Chen, K. Biswas, S. Suwas, and R. C. Mallik, ACS Appl. Energy Mater. 3, 635 (2019).

  117. Y. Dou, X. Yan, Y. Du, J. Xu, and D. Li, J. Mater. Sci. Mater. Electron. 31, 4808 (2020).

  118. Z. Zhou, J. Yang, Q. Jiang, D. Zhang, J. Xin, X. Li, Y. Ren, and X. He, J. Am. Ceram. Soc. 100, 5723 (2017).

    Article  CAS  Google Scholar 

  119. A. Pakdel, Q. Guo, V. Nicolosi, and T. Mori, J. Mater. Chem. A 6, 21341 (2018).

    Article  CAS  Google Scholar 

  120. J.J. Gong, A.J. Hong, J. Shuai, L. Li, Z.B. Yan, Z.F. Ren, and J.-M. Liu, Phys. Chem. Chem. Phys. 18, 16566 (2016).

    Article  CAS  Google Scholar 

  121. Z. Liu, J. Mao, S. Peng, B. Zhou, W. Gao, J. Sui, Y. Pei, and Z. Ren, Mater. Today Phys. 2, 54 (2017).

    Article  Google Scholar 

  122. R. Wang, F. Jia, X. Li, L. Chen, and L.-M. Wu, Cryst. Growth Des. 20, 3555 (2020).

    Article  CAS  Google Scholar 

  123. H.-S. Kim, K. H. Lee, J. Yoo, W. H. Shin, J. W. Roh, J.-Y. Hwang, S. W. Kim, and S. Kim, J. Alloys Compd. 741, 869 (2018).

  124. S. Roychowdhury, M. Dutta, and K. Biswas, J. Mater. Chem. A 6, 2416 (2018).

  125. J. Schmitt, Z.M. Gibbs, G.J. Snyder, and C. Felser, Mater. Horizons 2, 68 (2015).

    Article  CAS  Google Scholar 

  126. S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 10136 (2015).

    Article  CAS  Google Scholar 

  127. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  128. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States, Science (80-. ). 321, 554 (2008).

  129. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  CAS  Google Scholar 

  130. Y. Pei, N.A. Heinz, and G.J. Snyder, J. Mater. Chem. 21, 18256 (2011).

    Article  CAS  Google Scholar 

  131. T. Fang, S. Zheng, T. Zhou, L. Yan, and P. Zhang, Phys. Chem. Chem. Phys. 19, 4411 (2017).

    Article  CAS  Google Scholar 

  132. Y. Pei, A.D. LaLonde, H. Wang, and G.J. Snyder, Energy Environ. Sci. 5, 7963 (2012).

    Article  CAS  Google Scholar 

  133. A. Popescu, and L.M. Woods, Appl. Phys. Lett. 97, 52102 (2010).

    Article  CAS  Google Scholar 

  134. Z. Zhang, Y. Cao, Q. Tao, Y. Yan, X. Su, and X. Tang, J. Solid State Chem. 292, 121722 (2020).

  135. K.H. Lee, S. Kim, H.-S. Kim, and S.W. Kim, ACS Appl. Energy Mater. 3, 2214 (2020).

    Article  CAS  Google Scholar 

  136. J. W. Simonson, D. Wu, W. J. Xie, T. M. Tritt, and S. J. Poon, Phys. Rev. B 83, 235211 (2011).

  137. Q. Q. Wang, X. Y. Qin, D. Li, and T. H. Zou, Appl. Phys. Lett. 102, 154101 (2013).

  138. Q. Q. Wang, X. Y. Qin, D. Li, R. R. Sun, T. H. Zou, and N. N. Wang, J. Appl. Phys. 113, 124901 (2013).

  139. B. Ren, M. Liu, X. Li, X. Qin, D. Li, T. Zou, G. Sun, Y. Li, H. Xin, and J. Zhang, J. Mater. Chem. A 3, 11768 (2015).

    Article  CAS  Google Scholar 

  140. C. Gayner, and K.K. Kar, Prog. Mater. Sci. 83, 330 (2016).

    Article  CAS  Google Scholar 

  141. J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, and W. Zhang, Adv. Mater. 26, 3848 (2014).

    Article  CAS  Google Scholar 

  142. W.G. Zeier, H. Zhu, Z.M. Gibbs, G. Ceder, W. Tremel, and G.J. Snyder, J. Mater. Chem. C 2, 10189 (2014).

    Article  CAS  Google Scholar 

  143. S. Wang, Y. Sun, J. Yang, B. Duan, L. Wu, W. Zhang, and J. Yang, Energy Environ. Sci. 9, 3436 (2016).

    Article  CAS  Google Scholar 

  144. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

  145. Y. Feng, J.Q. Li, Y. Li, T. Ding, C. Zhang, L. Hu, F.S. Liu, W. Ao, and C. Zhang, J. Mater. Chem. A 8, 11370 (2020).

    Article  CAS  Google Scholar 

  146. F. Guo, B. Cui, Y. Liu, X. Meng, J. Cao, Y. Zhang, R. He, W. Liu, H. Wu, and S.J. Pennycook, Small 14, 1802615 (2018).

    Article  CAS  Google Scholar 

  147. R. Al Rahal Al Orabi, J. Hwang, C.-C. Lin, R. Gautier, B. Fontaine, W. Kim, J.-S. Rhyee, D. Wee, and M. Fornari, Chem. Mater. 29, 612 (2017).

  148. E. Nshimyimana, S. Hao, X. Su, C. Zhang, W. Liu, Y. Yan, C. Uher, C. Wolverton, M.G. Kanatzidis, and X. Tang, J. Mater. Chem. A 8, 1193 (2020).

    Article  CAS  Google Scholar 

  149. L. Sun, B. Liao, D. Sheberla, D. Kraemer, J. Zhou, E.A. Stach, D. Zakharov, V. Stavila, A.A. Talin, and Y. Ge, Joule 1, 168 (2017).

    Article  CAS  Google Scholar 

  150. B. Xu, T. Feng, M. T. Agne, L. Zhou, X. Ruan, G. J. Snyder, and Y. Wu, Angew. Chemie Int. Ed. 56, 3546 (2017).

  151. Y. Wang, W.-D. Liu, H. Gao, L.-J. Wang, M. Li, X.-L. Shi, M. Hong, H. Wang, J. Zou, and Z.-G. Chen, ACS Appl. Mater. Interfaces 11, 31237 (2019).

    Article  CAS  Google Scholar 

  152. D. Sivaprahasam, S. B. Chandrasekhar, S. Kashyap, A. Kumar, and R. Gopalan, Mater. Lett. 252, 231 (2019).

  153. D. Park, H. Ju, and J. Kim, Ceram. Int. 43, 11156 (2017).

    Article  CAS  Google Scholar 

  154. A.S.A. Nedunchezhian, D. Sidharth, R. Rajkumar, N.Y. Devi, K. Maeda, M. Arivanandhan, K. Fujiwara, G. Anbalagan, and R. Jayavel, RSC Adv. 10, 18769 (2020).

    Article  Google Scholar 

  155. N.K. Upadhyay, L.A. Kumaraswamidhas, B. Gahtori, S. Bathula, S. Muthiah, R. Shyam, N.S. Chauhan, R. Bhardwaj, and A. Dhar, J. Alloys Compd. 765, 412 (2018).

    Article  CAS  Google Scholar 

  156. L.D. Hicks, and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  157. L.D. Hicks, and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    Article  CAS  Google Scholar 

  158. P. Ferrando-Villalba, S. Chen, A.F. Lopeandía, F.X. Alvarez, M.I. Alonso, M. Garriga, J. Santiso, G. Garcia, A.R. Goñi, and D. Donadio, J. Phys. Chem. C 124, 19864 (2020).

    Article  CAS  Google Scholar 

  159. M.E. DeCoster, X. Chen, K. Zhang, C.M. Rost, E.R. Hoglund, J.M. Howe, T.E. Beechem, H. Baumgart, and P.E. Hopkins, Adv. Funct. Mater. 29, 1904073 (2019).

    Article  CAS  Google Scholar 

  160. X. Huang, S. Gluchko, R. Anufriev, S. Volz, and M. Nomura, ACS Appl. Mater. Interfaces 11, 34394 (2019).

    Article  CAS  Google Scholar 

  161. B. Xiang, J. Liu, J. Yan, H. Zhu, J. Zhang, J. Li, L. Chen, and Y. Wu, Solution Synthesis Ultrathin PbTe0. 5Se0. 5 Nanowires and the Low Lattice Thermal Conductivity, J. Phys. Chem. Solids 141, 109370 (2020).

  162. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  163. T. Taniguchi, T. Ishibe, N. Naruse, Y. Mera, M.M. Alam, K. Sawano, and Y. Nakamura, ACS Appl. Mater. Interfaces 12, 25428 (2020).

    Article  CAS  Google Scholar 

  164. R. Xu, L. Huang, J. Zhang, D. Li, J. Liu, J. Liu, J. Fang, M. Wang, and G. Tang, J. Mater. Chem. A 7, 15757 (2019).

    Article  CAS  Google Scholar 

  165. S. Fan, J. Zhao, Q. Yan, J. Ma, and H.H. Hng, J. Electron. Mater. 40, 1018 (2011).

    Article  CAS  Google Scholar 

  166. K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid, A. Cabot, and K.M. Ng, J. Mater. Chem. C 7, 2646 (2019).

    Article  CAS  Google Scholar 

  167. D. Qin, H. Wu, S. Cai, J. Zhu, B. Cui, L. Yin, H. Qin, W. Shi, Y. Zhang, and Q. Zhang, Adv. Energy Mater. 9, 1902435 (2019).

  168. J. Zhang, H. Ming, D. Li, X. Qin, J. Zhang, L. Huang, C. Song, and L. Wang, ACS Appl. Mater. Interfaces 12, 37155 (2020).

  169. F. Kong, J. Bai, Y. Zhao, Y. Liu, J. Shi, Z. Wang, and R. Xiong, Appl. Phys. Lett. 115, 203901 (2019).

  170. X. Zhang, and L.-D. Zhao, J. Mater. 1, 92 (2015).

    Google Scholar 

  171. A. Feldhoff, Entropy 22, 803 (2020).

    Article  Google Scholar 

  172. G. Tan, M. Ohta, and M.G. Kanatzidis, Philos. Trans. R. Soc. A 377, 20180450 (2019).

    Article  CAS  Google Scholar 

  173. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  174. Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 18, 194 (2016).

    Article  CAS  Google Scholar 

  175. S.J. Poon, D. Wu, S. Zhu, W. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 26, 2795 (2011).

    Article  CAS  Google Scholar 

  176. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, and J. König, J. Electron. Mater. 43, 1775 (2014).

    Article  CAS  Google Scholar 

  177. X. Hu, A. Yamamoto, and K. Nagase, J. Appl. Phys. 117, 225102 (2015).

  178. G. Nie, W. Li, J. Guo, A. Yamamoto, K. Kimura, X. Zhang, E. B. Isaacs, V. Dravid, C. Wolverton, and M. G. Kanatzidis, Nano Energy 66, 104193 (2019).

  179. J. García-Cañadas, A.V. Powell, A. Kaltzoglou, P. Vaqueiro, and G. Min, J. Electron. Mater. 42, 1369 (2013).

    Article  CAS  Google Scholar 

  180. S.H. Park, Y. Jin, J. Cha, K. Hong, Y. Kim, H. Yoon, C.-Y. Yoo, and I. Chung, ACS Appl. Energy Mater. 1, 1603 (2018).

    Article  CAS  Google Scholar 

  181. L. Chen, D. Mei, Y. Wang, and Y. Li, J. Alloys Compd. 796, 314 (2019).

    Article  CAS  Google Scholar 

  182. I.V. Korobeinikov, N.V. Morozova, L.N. Lukyanova, O.A. Usov, V.A. Kulbachinskii, V.V. Shchennikov, and S.V. Ovsyannikov, J. Phys. D. Appl. Phys. 51, 25501 (2017).

    Article  CAS  Google Scholar 

  183. Y. Chen, X. Hou, C. Ma, Y. Dou, and W. Wu, Adv. Mater. Sci. Eng. 2018, 1210562 (2018).

    Google Scholar 

  184. J. Yu, Y. Xing, C. Hu, Z. Huang, Q. Qiu, C. Wang, K. Xia, Z. Wang, S. Bai, X. Zhao, L. Chen, and T. Zhu, Adv. Energy Mater. 10, 2000888 (2020).

    Article  CAS  Google Scholar 

  185. W. Li, D. Stokes, B. Poudel, U. Saparamadu, A. Nozariasbmarz, H.B. Kang, and S. Priya, Energies 12, 4292 (2019).

    Article  CAS  Google Scholar 

  186. W. Li, B. Poudel, A. Nozariasbmarz, R. Sriramdas, H. Zhu, H.B. Kang, and S. Priya, Adv. Energy Mater. 10, 2001924 (2020).

    Article  CAS  Google Scholar 

  187. Q. Zhang, J. Liao, Y. Tang, M. Gu, C. Ming, P. Qiu, S. Bai, X. Shi, C. Uher, and L. Chen, Energy Environ. Sci. 10, 56 (2017).

    Google Scholar 

  188. Z. Liang, C. Xu, H. Shang, Q. Zhu, F. Ding, J. Mao, and Z. Ren, Mater. Today Phys. 19, 100413 (2021).

  189. A.K. Bohra, R. Bhatt, A. Singh, S. Bhattacharya, R. Basu, K.N. Meshram, S.K. Sarkar, P. Bhatt, P.K. Patro, and D.K. Aswal, Mater. Des. 159, 127 (2018).

    Article  CAS  Google Scholar 

  190. P. Qiu, T. Mao, Z. Huang, X. Xia, J. Liao, M.T. Agne, M. Gu, Q. Zhang, D. Ren, and S. Bai, Joule 3, 1538 (2019).

    Article  CAS  Google Scholar 

  191. M.S. El-Genk, and H.H. Saber, Energy Convers. Manag. 46, 1083 (2005).

    Article  CAS  Google Scholar 

  192. P. Jood, M. Ohta, A. Yamamoto, and M.G. Kanatzidis, Joule 2, 1339 (2018).

    Article  CAS  Google Scholar 

  193. L. Wang, K. Li, S. Zhang, C. Liu, Z. Zhang, J. Chen, and M. Gu, ACS Omega 5, 29844 (2020).

    Article  CAS  Google Scholar 

  194. R. Goswami, and R. Das, Renew. Energy 148, 1280 (2020).

    Article  Google Scholar 

  195. L. Zhang, X. Chen, and C. Han, Res. Dev. Mater. Sci 3, 571 (2018).

    Google Scholar 

  196. A. Date, A. Date, C. Dixon, and A. Akbarzadeh, Renew. Sustain. Energy Rev. 33, 371 (2014).

    Article  Google Scholar 

  197. S. LeBlanc, Sustain. Mater. Technol. 1, 26 (2014).

    Google Scholar 

  198. R. Tian, Y. Liu, K. Koumoto, and J. Chen, Joule 3, 1399 (2019).

    Article  Google Scholar 

  199. X. Zhu, Y. Yu, and F. Li, Constr. Build. Mater. 228, 116818 (2019).

  200. S. Ahmad, M. Abdul Mujeebu, and M. A. Farooqi, Int. J. Energy Res. 43, 1974 (2019).

  201. Z.-G. Shen, L.-L. Tian, and X. Liu, Energy Convers. Manag. 195, 1138 (2019).

    Article  Google Scholar 

  202. F. Suarez, A. Nozariasbmarz, D. Vashaee, and M.C. Öztürk, Energy Environ. Sci. 9, 2099 (2016).

    Article  CAS  Google Scholar 

  203. J.-H. Bahk, H. Fang, K. Yazawa, and A. Shakouri, J. Mater. Chem. C 3, 10362 (2015).

    Article  CAS  Google Scholar 

  204. V. Leonov, and R.J.M. Vullers, J. Renew. Sustain. Energy 1, 62701 (2009).

    Article  CAS  Google Scholar 

  205. V. Misra, A. Bozkurt, B. Calhoun, T. Jackson, J.S. Jur, J. Lach, B. Lee, J. Muth, Ö. Oralkan, and M. Öztürk, Proc. IEEE 103, 665 (2015).

    Article  CAS  Google Scholar 

  206. L.M. Castano, and A.B. Flatau, Smart Mater. Struct. 23, 53001 (2014).

    Article  CAS  Google Scholar 

  207. S. Yu, Q. Du, H. Diao, G. Shu, and K. Jiao, Energy Convers. Manag. 96, 363 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work is dedicated to our late, great mentor Dr. D. K. Misra, who passed away recently and who we continue to recognize as a corresponding author of this work. One of the authors AK highly acknowledges the DST-Inspire Fellowship (Grant No. IF180005) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Bhardwaj or D. K. Misra.

Ethics declarations

Conflict of interest

The authors declare that there have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Bano, S., Govind, B. et al. A Review on Fundamentals, Design and Optimization to High ZT of Thermoelectric Materials for Application to Thermoelectric Technology. J. Electron. Mater. 50, 6037–6059 (2021). https://doi.org/10.1007/s11664-021-09153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09153-7

Keywords

Navigation