Skip to main content
Log in

Performance Analysis for SnS- and Sn2S3-Based Back Surface Field CZTSSe Solar Cell: A Simulation Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CZTSSe-based solar cell structures have shown remarkable properties in terms of their low cost, greater stability, high absorption coefficient, and relatively inexpensive production process. However, their maximum achieved values of power conversion efficiency remain low, close to 12.6%. This is mainly due to the problem of back surface carrier recombination. In this paper, we present the results of studies carried out using the SCAPS-1D tool to test the viability of deploying SnS (tin sulphide) and Sn2S3 (tin(IV) sulphide) materials as a back surface field (BSF) layer, due to their inherent advantage of having a similar material composition as CZTSSe. A detailed analysis is carried out on CZTSSe and BSF layer doping variation and CZTSSe/BSF interface defect density to optimize the photovoltaic (PV) performance of the devices. The results reflect an increase in the efficiency from 12.57% to 16.34% (with SnS BSF) and 17.04% (with Sn2S3 BSF). The cell with the SnS BSF delivers an open-circuit voltage (VOC) of 0.59V, a short-circuit current density (JSC) of 37.74 mA/cm2, and a fill factor (FF) of 73.36%, while the device with the Sn2S3 BSF delivers VOC of 0.59V, JSC of 37.68 mA/cm2 and FF of 76.46%. The results reported in this study could open a pathway to realize high-efficiency CZTSSe solar cell structures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

The data that support the findings of this study shall be made available from the corresponding author upon reasonable request.

References

  1. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and A.W.Y. Ho-Baillie, Prog. Photovolt. Res. Appl., 28 (NREL/JA-5900-75827) (2019).

  2. R. Pandey, and R. Chaujar, Sol. Energy 135, 242 (2016).

    Article  CAS  Google Scholar 

  3. J. Madan, Shivani, R. Pandey, and R. Sharma, Sol. Energy 197, 212 (2020).

    Article  CAS  Google Scholar 

  4. Shivani, J. Madan, R. Pandey, and R. Sharma, Designing of CZTSSe Based SnS thin film solar cell for improved conversion efficiency: a simulation study with SCAPS, in 2019 46th IEEE Photovoltaic Specialists Conference (PVSC). 2019: IEEE, pp. 0193–0195. https://doi.org/10.1109/PVSC40753.2019.8980459

  5. H. ElAnzeery, O. El Daif, M. Buffiere, S. Oueslati, K. Ben Messaoud, D. Agten, G. Brammertz, R. Guindi, B. Kniknie, and M. Meuris, Physica Status Solidi (a) 212, 1984 (2015).

    Article  CAS  Google Scholar 

  6. B. Ananthoju, J. Mohapatra, M.K. Jangid, D. Bahadur, N.V. Medhekar, and M. Aslam, Sci. Rep. 6, 35369 (2016).

    Article  CAS  Google Scholar 

  7. H. Deng, Q. Sun, Z. Yang, W. Li, Q. Yan, C. Zhang, Q. Zheng, X. Wang, Y. Lai, and S. Cheng, Nat. Commun. 12, 3107 (2021).

    Article  CAS  Google Scholar 

  8. X.-F. Dong, T.-T. Zheng, F.-X. Yang, X.-D. Sun, L. Yu, J.-T. Chen, C.-W. Wang, Y. Zhao, and Y. Li, Sol. Energy Mater. Solar Cells 227, 111102 (2021).

    Article  CAS  Google Scholar 

  9. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, and C.-W. Jeon, J. Mater. Chem. A 4, 10151 (2016).

    Article  CAS  Google Scholar 

  10. W.-C. Zhang, J.-Y. Tang, Y.-H. Niu, R. Huang, L. Chen, and M.-Y. Jiang, J. Renew. Sustain. Energy 13, 033701 (2021).

    Article  CAS  Google Scholar 

  11. B.H. Lee, K.S. Gour, V. Karade, J.S. Jang, J. Kim, E. Jo, M.G. Gang, D.M. Lee, I.J. Lee, J. Park, and J.H. Kim, Mater. Lett. 284, 128981 (2021).

    Article  CAS  Google Scholar 

  12. H. Jeong, R. Nandi, J.Y. Cho, P.S. Pawar, H.S. Lee, K.E. Neerugatti, J.H. Kim, and J. Heo, Prog. Photovolt. Res. Appl.

  13. K.-J. Yang, S. Kim, S.-Y. Kim, D.-H. Son, J. Lee, Y.-I. Kim, S.-J. Sung, D.-H. Kim, T. Enkhbat, J. Kim, J. Kim, W. Jo, and J.-K. Kang, Adv. Func. Mater. 31, 2102238 (2021).

    Article  CAS  Google Scholar 

  14. M.K. Omrani, M. Minbashi, N. Memarian, and D.-H. Kim, Solid-State Electron. 141, 50 (2018).

    Article  CAS  Google Scholar 

  15. J. Henry, K. Mohanraj, and G. Sivakumar, J. Asian Ceram. Soc. 4, 81 (2016).

    Article  Google Scholar 

  16. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).

    Article  Google Scholar 

  17. A. Kumar and A.D. Thakur, Improvement of efficiency in CZTSSe solar cell by using back surface field. p. 012027.

  18. S. Gohri, S. Sharma, R. Pandey, J. Madan, and R. Sharma, Influence of SnS and Sn2S3 based BSF layers on the performance of CZTSSe solar cell. pp. 2300.

  19. X. Zhang, B. Yao, Y. Li, Z. Ding, H. Zhao, L. Zhang, and Z. Zhang, Sol. Energy 199, 128 (2020).

    Article  CAS  Google Scholar 

  20. P.S. Babu, P.K. Singh, A.K. Thakur, and D.K. Dwivedi, Optik 229, 166235 (2021).

    Article  Google Scholar 

  21. M. Minbashi, A. Ghobadi, M.H. Ehsani, H.R. Dizaji, and N. Memarian, Sol. Energy 176, 520 (2018).

    Article  CAS  Google Scholar 

  22. T.S. Reddy, M.C.S. Kumar, and S. Shaji, Mater. Res. Express 4, 046404 (2017).

    Article  Google Scholar 

  23. A. Basak, and U.P. Singh, Sol. Energy Mater. Solar Cells 230, 111184 (2021).

    Article  CAS  Google Scholar 

  24. F. Baig, Y.H. Khattak, A. Shuja, K. Riaz, and B.M. Soucase, Curr. Appl. Phys. 20, 973 (2020).

    Article  Google Scholar 

  25. S. Karthick, J. Bouclé, and S. Velumani, Sol. Energy 218, 157 (2021).

    Article  CAS  Google Scholar 

  26. N.A. Mahammedi, H. Gueffaf, B. Lagoun, and M. Ferhat, Opt. Mater. 107, 110043 (2020).

    Article  CAS  Google Scholar 

  27. S. Sharma, R. Pandey, J. Madan, and R. Sharma, Opt. Mater. 111, 110644 (2021).

    Article  CAS  Google Scholar 

  28. R. Pandey, A. Khanna, K. Singh, S.K. Patel, H. Singh, and J. Madan, Sol. Energy 207, 893 (2020).

    Article  CAS  Google Scholar 

  29. J. Madan, S. Garg, K. Gupta, S. Rana, A. Manocha, and R. Pandey, Optik 202, 163646 (2020).

    Article  CAS  Google Scholar 

  30. S. Karthick, S. Velumani, and J. Bouclé, Sol. Energy 205, 349 (2020).

    Article  CAS  Google Scholar 

  31. X. Zhang, P.K. Santra, L. Tian, M.B. Johansson, H. Rensmo, and E.M.J. Johansson, ACS Nano 11, 8478 (2017).

    Article  CAS  Google Scholar 

  32. X. Zhang, and E.M.J. Johansson, J. Mater. Chem. A 5, 303 (2017).

    Article  CAS  Google Scholar 

  33. M. Burgelman, J. Verschaegen, S. Degrave, and P. Nellet, Modeling Thin Film PV Devices, Progress in Photovoltaic: Research and Application (Wiley, 2004).

  34. M. Burgelman, J. Verschraegen, B. Minnaert, and J. Marlein, Numerical simulation of thin film solar cells: practical exercises with SCAPS.

  35. L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, and A. Walsh, Chem. Mater. 25, 4908 (2013).

    Article  CAS  Google Scholar 

  36. D.F. Swinehart, J. Chem. Educ. 39, 333 (1962).

    Article  CAS  Google Scholar 

  37. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Springer, 2013).

  38. C. Honsberg and S. Bowden. The absorption coefficient, α, in a variety of semiconductor materials at 300K as a function of the vacuum wavelength of light. 20/07/2021; https://www.pveducation.org/pvcdrom/pn-junctions/absorption-coefficient.

  39. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang, and D.-H. Kim, J. Mater. Chem. A 4, 10151 (2016).

    Article  CAS  Google Scholar 

  40. Y.H. Khattak, F. Baig, B. Marí, S. Beg, S.R. Gillani, and T. Ahmed, J. Electron. Mater. 47, 5183 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marc Burgelman for providing the SCAPS-1D simulator and Chitkara University for providing the necessary support to carry out this work. Author Rahul Pandey is grateful to SERB, Ministry of Science and Technology, Government of India for the Start-up Research Grant (SRG) with file number: SRG/2019/000941.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaya Madan, Rahul Pandey or Rajnish Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest, financially or non-financially, directly or indirectly related to the work under consideration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohri, S., Madan, J., Pandey, R. et al. Performance Analysis for SnS- and Sn2S3-Based Back Surface Field CZTSSe Solar Cell: A Simulation Study. J. Electron. Mater. 50, 6318–6328 (2021). https://doi.org/10.1007/s11664-021-09152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09152-8

Keywords

Navigation