Skip to main content
Log in

Effect of Oxidation and Hot Corrosion on Stress Corrosion Cracking Susceptibility of Inconel 738 Alloy

  • Published:
Strength of Materials Aims and scope

Increasing the operating temperature of industrial machinery requires compatible materials to the higher temperature, which will maintain their strength with desired properties. The marine, petrochemical, and aerospace industries involve contact of base alloys of industrial machinery and appliances with the environment consisting of oxygen and salts such as NaCl, Na2SO4, and V2O5. Thus, the substrate, i.e., superalloy, is coated with thermal barrier coatings (TBC) to protect the material from oxidation and hot corrosion. But due to wear-tear, intricate shapes, and designs, some parts of the substrate may be exposed to the environment. When the oxygen and salts react with the base alloy at high temperatures, it forms oxide products and corrosive salts. This may adversely affect the working of the industrial component. Thus, in the present study, Inconel 738 alloy specimens were coated with the salts NaCl, Na2SO4, and V2O5 in different combinations of proportions. The coated and not coated specimens were kept in the furnace for 500 h with a constant temperature maintained at 900°C. After this process, the specimens were tested on a slow strain rate testing machine (SSRT) for a low strain rate of 10–6 s–1. Scanning electron microscopy (SEM) was used to observe the fractured specimens to study the morphology of the fractured area. The elemental analysis was done by using electron dispersive spectroscopy (EDS). The X-ray diffraction (XRD) technique was used for analyzing the scale formed on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.01a.
Fig. 5.01b.
Fig. 5.02.
Fig. 5.03.
Fig. 5.04.
Fig. 5.05.
Fig. 5.06.
Fig. 5.07.
Fig. 5.08.
Fig. 5.09.
Fig. 5.10.
Fig. 5.11.
Fig. 5.12.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. G. W. Goward, “Progress in coatings for gas turbine airfoils,” Surf Coat Tech, 108,73–79 (1998).

    Article  Google Scholar 

  2. D. J. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier (2015).

  3. A. R. Patil and S. T. Vagge, “Hot corrosion behavior of Inconel 738 superalloy in the presence of NaCl, Na2SO4, V2O5,” Mater Today-Proc, 65, No. 1, 74–80 (2022).

    Article  CAS  Google Scholar 

  4. R. C. Reed, The Superalloys. Fundamentals and Applications, Cambridge University Press (2006).

    Book  Google Scholar 

  5. R. A. Rapp and Y.-S. Zhang, “Hot corrosion of materials: Fundamental studies,” JOM, 46, No. 12, 47–55 (1994).

    Article  CAS  Google Scholar 

  6. S. W. Sharkawy, Z. Xia, and Z. Szklarska-Smialowska, “Stress corrosion cracking susceptibility and some electrochemical characteristics of Inconel X-750 in lithiated water at 350°C,” J Nucl Mater, 200, No. 1, 82–89 (1993).

    Article  CAS  Google Scholar 

  7. Y. Wei, Q. Zhao, X. Zhang, et al., “Study on corrosion cracking and oxidation mechanism of Inconel 718 burner of gasifier pulverized coal,” Eng Fail Anal, 111, 104504 (2020).

    Article  CAS  Google Scholar 

  8. G. A. El-Awadi, S. Abdel-Samada, and E. S. Elshazly, “Hot corrosion behavior of Ni-based Inconel 617 and Inconel 738 superalloys,” Appl Surf Sci, 378, 224–230 (2016).

    Article  CAS  Google Scholar 

  9. K. Srinivasa Vadayar and S. Devaki Rani, “Hot corrosion behavior of nickel-based superalloys,” Int J Appl Res Mech Eng, 2, No. 4, 223–227 (2013).

  10. M. M. Ghadmode, A. R. Patil, B. U. Sonawane, and A. Mulay, “Analysis of TIG-welded aluminum alloys during single point incremental forming at different wall angles,” in H. K. Dave and D. Nedelcu (Ed.), Advances in Manufacturing Processes. Select Proceedings of RAM 2020, Springer Singapore (2020), pp. 187–203.

  11. S. Kumar and R. Kumar, “Influence of processing conditions on the properties of thermal sprayed coating: a review,” Surf Eng, 37, 1339–1372 (2021).

    Article  CAS  Google Scholar 

  12. D. Deb, S. Ramakrishna Iyer, and V. M. Radhakrishnan, “A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments,” Mater Lett, 29, 19–23 (1996).

  13. S. Kumar, A. Handa, V. Chawla, et al., “Performance of thermal-sprayed coatings to combat hot corrosion of coal-fired boiler tube and effects of process parameters and post coating heat treatment on coating performance: a review,” Surf Eng, 37, No. 7, 833–860 (2021).

    Article  CAS  Google Scholar 

  14. A. Zahs, M. Spiegel, and H. J. Grabke, “Chloridation and oxidation of iron, chromium, nickel and their alloys in chloridizing and oxidizing atmospheres at 400±700ºC,” Corros Sci, 42, 1093–1122 (2000).

    Article  CAS  Google Scholar 

  15. S. Kumar, M. Kumar, and A. Handa, “Comparative study of the high temperature oxidation behavior of wire arc sprayed Ni-Cr and Ni-Al coatings,” Eng Fail Anal, 106, 104173–104189 (2019).

    Article  CAS  Google Scholar 

  16. N. C. Reddy, P. G. Koppad, H. N. Reddappa, et al., “Hot corrosion behavior of HVOF sprayed Ni3Ti and Ni3Ti+(Cr3C2+20NiCr) coatings in the presence of Na2SO4 - 40%V2O5 at 650°C,” Surf Topog Metrol Prop, 7, No. 2, 025019 (2019).

    Google Scholar 

  17. S. Kumar, M. Kumar, and A. Handa, “Erosion corrosion behavior and mechanical property of wire arc sprayed Ni-Cr and Ni-Al coating on boiler steels in actual boiler environment,” Material at High Temperature, 37, No. 6, 370–384 (2020).

    Article  CAS  Google Scholar 

  18. N. Eliaz, G. Shemesh, and R. M. Latanision, “Hot corrosion in gas turbine components,” Eng Fail Anal, 9, No. 1, 31–43 (2002).

    Article  CAS  Google Scholar 

  19. K. Shivalingaiah, K. S. Sridhar, D. Sethuram, et al., “HVOF sprayed Inconel 718/cubic boron nitride composite coatings: Microstructure, microhardness and slurry erosive behavior," Mater Res Express, 6, No. 12, 1265i8 (2020).

  20. P. Purohit and S. T. Vagge, “Evaluation of alumina incorporated combined ceramic layer thermal barrier coating,” Surf Coat Tech, 307, 871–878 (2016).

    Article  CAS  Google Scholar 

  21. A. R. Patil and S. T. Vagge, “Corrosion and tribological study of Ti-6Al-4V alloy in ringer solution,” U.P.B. Sci Bull Series B, 80, No. 2, 239–248 (2018).

  22. L. Yuan and H. M. Wang, “Hot corrosion behaviors of a Cr13Ni5Si2-based metal silicide alloy in Na2SO4 + 25 wt.% K2SO4 and Na2SO4 + 25 wt.% NaCl molten salts,” Intermetallics, 18, No. 3, 324–329 (2010).

    Article  CAS  Google Scholar 

  23. J. G. Gonzalez-Rodriguez, S. Haro, A. Martinez-Villafañe, et al., “Corrosion performance of heat resistant alloys in Na2SO4-V2O5 molten salts,” Mater Sci Eng A, 435–436, 258–265 (2006).

    Article  Google Scholar 

  24. Z. Yu and X. Xu, Failure Analysis Cases of Components of Automotive and Locomotive Engines, in: A. S. H. Makhlouf and M. Aliofkhazra (Eds.), Handbook of Materials Failure Analysis with Case Studies from the Aerospace and Automotive Industries, Elsevier (2016), pp. 365–391.

  25. J. A. Goebel, F. S. Pettit, and G. W. Goward, “Mechanisms for the hot corrosion of nickel-base alloys,” Metall Trans, 4, No. 1, 261–278 (1973).

    Article  CAS  Google Scholar 

  26. F. H. Stott and E. Lang, The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, Springer Netherlands (1989).

    Google Scholar 

  27. A. R. Patil, K. R. Patil, and S. T. Vagge, “Effect of varying load on wear characteristic of Ti-6Al-4V alloy,” IJRITCC, 5, No. 9, 31–35 (2017).

    Google Scholar 

  28. R. A. Rapp, “Chemistry and electrochemistry of hot corrosion of metals,” Mater Sci Eng, 87, 319–327 (1987).

    Article  CAS  Google Scholar 

  29. I. Gurrappa, “Mechanism of degradation of titanium alloy IMI 834 and its protection under hot corrosion conditions,” Oxid Met, 59, Nos. 3–4, 321–322 (2003).

    Article  CAS  Google Scholar 

  30. I. Gurrappa, “Overlay coatings degradation an electrochemical approach,” J Mater Sci Lett, 18, 1713–1717 (1999).

    Article  CAS  Google Scholar 

  31. Y. S. Hwang and R. A. Rapp, “Synergistic dissolution of oxides in molten sodium sulfate,” J Electrochem Soc, 137, No. 4, 1276 (1990).

    Google Scholar 

  32. A. Al-Hatab, M. A. Al-Bukhaiti, and U. Krupp, “Cyclic oxidation kinetics and oxide scale morphologies developed on alloy 617,” Appl Surf Sci, 318, 275–279 (2014).

    Article  CAS  Google Scholar 

  33. C. J. Wang, Y. C. Chang, and Y. H. Su, “The hot corrosion of Fe–Mn–Al–C alloy with NaCl/Na2SO4 coating mixtures at 750°C,” Oxid Met, 59, 115–130 (2003).

    Article  CAS  Google Scholar 

  34. S. T. Vagge, A. B. Pahurkar, and S. B. Ghogare, "Synthesis and processing of thermal barrier coatings with the use of YSZ, LTA, and LTA/YSZ,” Mater Today Proc, 48, 1680–1689 (2022).

    Article  CAS  Google Scholar 

  35. X. Zhou, Z. Xu, L. He, et al., “Hot corrosion behavior of LaTi2Al9O19 ceramic exposed to vanadium oxide at temperatures of 700–950°C in air,” Corros Sci, 104, 310–318 (2016).

    Article  CAS  Google Scholar 

  36. X. Xie, H. Guo, S. Gong, and H. Xu, “Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame,” Surf Coat Tech, 205, 4291–4298 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Patil or S. T. Vagge.

Additional information

Translated from Problemy Mitsnosti, No. 3, p. 123, May – June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.R., Vagge, S.T. Effect of Oxidation and Hot Corrosion on Stress Corrosion Cracking Susceptibility of Inconel 738 Alloy. Strength Mater 55, 582–605 (2023). https://doi.org/10.1007/s11223-023-00551-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-023-00551-2

Keywords

Navigation