Skip to main content
Log in

Enhanced magnetoresistance and evolution of Griffiths-like phase in La1−xCaxMnO3 (x = 0.4, 0.5) nanoparticles

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Temperature and magnetic field–dependent electrical and magnetic properties of La1−xCaxMnO3 (x = 0.4, 0.5) polycrystalline materials prepared by the sol-gel method are studied. An apically compressed/elongated-type distorted orthorhombic pnma-O′–phase crystallization occurs in the sample with the addition of Ca. The crystallized phases are ensured by the Rietveld refinement using the Fullprof package. Dangling bonds on the surfaces of the nanosized particles affect the vibrational features. Field emission scanning electron microscopy (FESEM) images depict the agglomeration of uniformly sized grains. With increase of Ca concentration, super-exchange (SE) interactions overcome the dominant double-exchange (DE) interactions and shift the Curie-temperature to a lower value (TC = 267 – 234K). Based on the Banerjee’s criterion, the Arrott plot confirms a second-order magnetic phase transition in the samples. Temperature-dependent evolution of the Griffiths-like phase (GP) is observed in the samples and GP% increases with Ca content. The various transitions in the different temperature ranges and magnetic field–dependent electrical transport behaviours are explained using different theoretical models. The dopant concentration influences the Mn3+/Mn4+ ratio, leading to changes in the conductivity, which is mediated by ferromagnetically (FM) ordered conduction channels, altering the metal to insulator (M-I) as well as the ferromagnetic to paramagnetic (FM-PM) as well as the ferromagnetic to antiferromagnetic (FM-AFM) transition temperatures. The electrical transport in the high temperature region is explained using variable range and small polaron hopping (VRH and SPH) models. Using Holstein’s relation, it is evident that non-adiabatic SPH (NASPH) model is the most adequate method to explain the high-temperature electrical conductivity. The half-doped samples show a higher value (~ 95%) of magnetoresistance (MR). The present study shows an increase in the Tc and TM − I towards room temperature and in the MR percentage, which may be good for different applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The data will be available on request.

References

  1. Sarkar A, Wang D, Kante MV, Eiselt L, Trouillet V, Iankevich G, Zhao Z, Bhattacharya SS, Hahn H, Kruk R (2022) High entropy approach to engineer strongly correlated functionalities in manganites. Adv Mater 2207436:1–14. https://doi.org/10.1002/adma.202207436

    Article  CAS  Google Scholar 

  2. Salamon MB, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73:583–628. https://doi.org/10.1103/RevModPhys.73.583

    Article  CAS  Google Scholar 

  3. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science (80-. ) 264:413–415. https://doi.org/10.1126/science.264.5157.413

    Article  CAS  Google Scholar 

  4. Troyanchuk IO, Trukhanov SV, Szymczak H, Przewoznik J, Bärner K (2001) Phase transitions in La1-xCaxMnO3-x/2 manganites. J Exp Theor Phys 93:161–167. https://doi.org/10.1134/1.1391533

    Article  CAS  Google Scholar 

  5. Jithin PV, Bitla Y, Patidar MM, Ganesan V, Sankaran KJ, Kurian J (2023) Structural, magnetic and electrical transport properties of the sol-gel derived La1-xCaxMnO3 (0≤x≤0.3) nanoparticles. Mater Chem Phys 301:127651. https://doi.org/10.1016/j.matchemphys.2023.127651

    Article  CAS  Google Scholar 

  6. Goodenough JB, Wold A, Arnott RJ, Menyuk N (1961) Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+. Phys Rev 124:373–384. https://doi.org/10.1103/PhysRev.124.373

    Article  CAS  Google Scholar 

  7. Zhumatayeva IZ, Kenzhina IE, Kozlovskiy AL, Zdorovets MV (2020) The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics. J Mater Sci Mater Electron 31:6764–6772. https://doi.org/10.1007/s10854-020-03234-9

    Article  CAS  Google Scholar 

  8. Ade R, Singh R (2015) Disorder-driven phase transition in La0.37D0.30Ca0.33MnO3 (D = Bi, Sm) manganites. AIP Adv 5:0–12. https://doi.org/10.1063/1.4928284

    Article  CAS  Google Scholar 

  9. Tabari T, Singh D, Calisan A, Ebadi M, Tavakkoli H, Caglar B (2017) Microwave assisted synthesis of La1−xCaxMnO3 (x = 0, 0.2 and 0.4): structural and capacitance properties. Ceram Int 43:15970–15977. https://doi.org/10.1016/j.ceramint.2017.08.182

    Article  CAS  Google Scholar 

  10. Dutta U, Ghosh D, Haque A, Walke PS, Mordvinova NE, Lebedev OI, Pal K, Gayen A, Kundu AK, Seikh MM (2018) Influence of Ti-doping on the magnetic exchange interaction of La0.5Ca0.5MnO3 nanoparticles. J Magn Magn Mater 464:132–138. https://doi.org/10.1016/j.jmmm.2018.05.057

    Article  CAS  Google Scholar 

  11. Najjar H, Batis H (2016) Development of Mn-based perovskite materials: chemical structure and applications. Catal Rev Sci Eng 58:371–438. https://doi.org/10.1080/01614940.2016.1198203

    Article  CAS  Google Scholar 

  12. Kozlovskiy AL, Zdorovets MV (2021) Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater Chem Phys 263:124444. https://doi.org/10.1016/j.matchemphys.2021.124444

    Article  CAS  Google Scholar 

  13. Khan SA, Ali I, Hussain A, Javed HMA, Turchenko VA, Trukhanov AV, Trukhanov SV (2022) synthesis and characterization of composites with Y-hexaferrites for electromagnetic interference shielding applications. Magnetochemistry 8:1–16. https://doi.org/10.3390/magnetochemistry8120186

    Article  CAS  Google Scholar 

  14. Gaur A, Varma GD (2006) Magnetoresistance behaviour of La0.7Sr0.3MnO3/NiO composites. Solid State Commun 139:310–314. https://doi.org/10.1016/j.ssc.2006.05.018

    Article  CAS  Google Scholar 

  15. Wu YJ, Wang ZJ, Ning XK, Wang Q, Liu W, Zhang ZD (2018) Room temperature magnetoresistance properties in self-assembled epitaxial La0.7Sr0.3MnO3 :NiO nanocomposite thin films. Mater Res Lett 6:489–494. https://doi.org/10.1080/21663831.2018.1482838

    Article  CAS  Google Scholar 

  16. Dhieb S, Krichene A, Boudjada NC, Boujelben W (2020) Suppression of metamagnetic transitions of martensitic type by particle size reduction in charge-ordered La0.5Ca0.5MnO3. J Phys Chem C 124:17762–17771. https://doi.org/10.1021/acs.jpcc.0c04910

    Article  CAS  Google Scholar 

  17. Trukhanov AV, Panina LV, Trukhanov SV, Kostishyn VG, Turchenko VA, Vinnik DA, Zubar TI, Yakovenko ES, Macuy LY, Trukhanova EL (2018) Critical influence of different diamagnetic ions on electromagnetic properties of BaFe12O19. Ceram Int 44:13520–13529. https://doi.org/10.1016/j.ceramint.2018.04.183

    Article  CAS  Google Scholar 

  18. Trukhanov SV, Trukhanov AV, Kostishyn VG, Panina LV, Turchenko VA, Kazakevich IS, Trukhanov AV, Trukhanova EL, Natarov VO, Balagurov AM (2017) Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J Magn Magn Mater 426:554–562. https://doi.org/10.1016/j.jmmm.2016.10.151

    Article  CAS  Google Scholar 

  19. Sun T, Zhao S, Ji F, Liu X (2018) Enhanced room-temperature MR and TCR in polycrystalline La0.67(Ca0.33−xSrx)MnO3 ceramics by oxygen assisted sintering. Ceram Int 44:2400–2406. https://doi.org/10.1016/j.ceramint.2017.10.209

    Article  CAS  Google Scholar 

  20. Ezaami A, Nasser NO, Cheikhrouhou A (2017) Enhancement of magnetocaloric properties in (1-x)La0.7Ca0.2Sr0.1MnO3/xLa0.7Ca0.15Sr0.15MnO3 composite system (0≤x≤1). Mater Res Bull. https://doi.org/10.1016/j.materresbull.2017.07.036

  21. Ezaami A, Chaaba I, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil EK (2018) Enhancement of magnetocaloric properties around room temperature in (1-x)La0.7Ca0.25Sr0.05MnO3/xLa0.7Ca0.2Sr0.1MnO3 system (0 ≤ x ≤ 1). J Alloys Compd 735:2331–2335. https://doi.org/10.1016/j.jallcom.2017.11.353

    Article  CAS  Google Scholar 

  22. McBride K, Cook J, Gray S, Felton S, Stella L, Poulidi D (2016) Evaluation of La1−xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia. CrystEngComm. 18:407–416. https://doi.org/10.1039/C5CE01890K

    Article  CAS  Google Scholar 

  23. Ezaami A, Nasser NO, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil EK (2017) Physical properties of La0.7Ca0.2Sr0.1MnO3 manganite: a comparison between sol–gel and solid state process. J Mater Sci Mater Electron 28:3648–3658. https://doi.org/10.1007/s10854-016-5969-0

    Article  CAS  Google Scholar 

  24. Fabian FA, Pedra PP, Filho JLS, Duque JGS, Meneses CT (2015) Synthesis and characterization of La(Cr,Fe,Mn)O3 nanoparticles obtained by co-precipitation method. J Magn Magn Mater 379:80–83. https://doi.org/10.1016/j.jmmm.2014.12.004

    Article  CAS  Google Scholar 

  25. Giannakas A, Ladavos A, Pomonis P (2004) Preparation, characterization and investigation of catalytic activity for NO+CO reaction of LaMnO3 and LaFeO3 perovskites prepared via microemulsion method. Appl Catal B Environ 49:147–158. https://doi.org/10.1016/j.apcatb.2003.12.002

    Article  CAS  Google Scholar 

  26. Xu Y, Meier M, Das P, Koblischka MR, Hartmann U (2002) Perovskite manganites: potential materials for magnetic cooling at or near room temperature. Cryst Eng 5:383–389. https://doi.org/10.1016/S1463-0184(02)00049-7

    Article  CAS  Google Scholar 

  27. Alami D (2013) environmental applications of rare-earth manganites as catalysts: a comparative study. Environ Eng Res 18:211–219. https://doi.org/10.4491/eer.2013.18.4.211

    Article  Google Scholar 

  28. Dey P, Nath TK (2006) Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys Rev B 73:214425. https://doi.org/10.1103/PhysRevB.73.214425

    Article  CAS  Google Scholar 

  29. Xia W, Pei Z, Leng K, Zhu X (2020) Research progress in rare earth-doped perovskite manganite oxide nanostructures. Nanoscale Res Lett 15:1–55. https://doi.org/10.1186/s11671-019-3243-0

    Article  CAS  Google Scholar 

  30. Trukhanov SV, Trukhanov AV, Dang NT, Zakhvalinskii VS, Kozlenko DP, Phan T, Kichanov SE, Ovsyannikov SV, Jabarov SH, Trukhanov AV, Trukhanov EL, Vinnik DA, Gudkova SA (2018) Magnetotransport properties and phase separation in iron substituted lanthanum-calcium manganite. Mater Res Express 5:1–12. https://doi.org/10.1088/2053-1591/aad118

    Article  CAS  Google Scholar 

  31. Trukhanov SV (2005) Peculiarities of the magnetic state in the system La0.70Sr0.30MnO(3-γ) (0≤γ≤0.25). J Exp Theor Phys 100:95–105. https://doi.org/10.1134/1.1866202

    Article  CAS  Google Scholar 

  32. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192:55–69. https://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  33. Lira-Hernández IA, Sánchez-De Jesús F, Cortés-Escobedo CA, Bolarín-Miróz AM (2010) Crystal structure analysis of calcium-doped lanthanum manganites prepared by mechanosynthesis. J Am Ceram Soc 93:3474–3477. https://doi.org/10.1111/j.1551-2916.2010.03872.x

    Article  CAS  Google Scholar 

  34. Sultan K, Ikram M (2015) An investigation of electrical, magnetic and optical properties of La1-xCaxMnO3 (x= 0.0, 0.3, 0.5 And 0.7) system. Adv Mater Lett 6:749–755. https://doi.org/10.5185/amlett.2015.5875

    Article  CAS  Google Scholar 

  35. Roy C, Budhani RC (1999) Raman, infrared and x-ray diffraction study of phase stability in La1−xBaxMnO3 doped manganites. J Appl Phys 85:3124–3131. https://doi.org/10.1063/1.369651

    Article  CAS  Google Scholar 

  36. Keshri S, Joshi L, Rout SK (2009) Influence of BTO phase on structural, magnetic and electrical properties of LCMO. J Alloys Compd 485:501–506. https://doi.org/10.1016/j.jallcom.2009.06.006

    Article  CAS  Google Scholar 

  37. Li G, Zhou H-D, Feng SJ, Fan X-J, Li X-G, Wang ZD (2002) Competition between ferromagnetic metallic and paramagnetic insulating phases in manganites. J Appl Phys 92:1406–1410. https://doi.org/10.1063/1.1490153

    Article  CAS  Google Scholar 

  38. Altintas SP, Amira A, Mahamdioua N, Varilci A, Terzioglu C (2011) Effect of Eu doping on structural and magneto-electrical properties of La0.7Ca0.3MnO3 manganites. J Alloys Compd 509:4510–4515. https://doi.org/10.1016/j.jallcom.2011.01.008

    Article  CAS  Google Scholar 

  39. Tiwari A, Rajeev KP (1999) Low-temperature electrical transport in La0.7A0.3MnO3, (A: Ca, Sr, Ba). Solid State Commun 111:33–37. https://doi.org/10.1016/S0038-1098(99)00148-9

    Article  CAS  Google Scholar 

  40. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403–405. https://doi.org/10.1103/PhysRev.82.403

    Article  CAS  Google Scholar 

  41. Channagoudra G, Gupta S, Dayal V (2021) Study of structural, transport and magneto-crystalline anisotropy in La1-xSrxMnO3 (0.30 ≤ x ≤ 0.40) perovskite manganites. AIP Adv 11:1–5. https://doi.org/10.1063/9.0000119

    Article  CAS  Google Scholar 

  42. Krichene A, Solanki PS, Rayaprol S, Ganesan V, Boujelben W, Kuberkar DG (2015) B-site bismuth doping effect on structural, magnetic and magnetotransport properties of La0.5Ca0.5Mn1-xBixO3. Ceram Int 41:2637–2647. https://doi.org/10.1016/j.ceramint.2014.10.163

    Article  CAS  Google Scholar 

  43. Jaime M, Salamon MB, Rubinstein M, Treece RE, Horwitz JS, Chrisey DB (1996) High temperature thermopower in La2/3Ca1/3MnO3 films: evidence for polaronic transport. Phys Rev B 54:11914–11917. https://doi.org/10.1103/PhysRevB.54.11914

    Article  CAS  Google Scholar 

  44. Dhahri A, Jemmali M, Dhahri E, Hlil EK (2015) Electrical transport and giant magnetoresistance in La0.75Sr0.25Mn1−xCrxO3 (0.15, 0.20 and 0.25) manganite oxide. Dalt Trans 44:5620–5627. https://doi.org/10.1039/C4DT03662J

    Article  CAS  Google Scholar 

  45. Sen V, Panwar N, Bhalla GL, Agarwal SK (2007) Structural, magnetotransport and morphological studies of Sb-doped La2/3Ba1/3MnO3 ceramic perovskites. J Phys Chem Solids 68:1685–1691. https://doi.org/10.1016/j.jpcs.2007.04.012

    Article  CAS  Google Scholar 

  46. Jeffrey Snyder G, Hiskes R, Dicarolis S (1996) Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys Rev B 53:434–444. https://doi.org/10.1103/PhysRevB.53.14434

    Article  Google Scholar 

  47. Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Tokura Y (1995) Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3. Phys Rev B 51:14103–14109. https://doi.org/10.1103/PhysRevB.51.14103

    Article  CAS  Google Scholar 

  48. Mott NF, Davis EA (1979) Electronic process in non-crystalline materials, Second Edi edn. Clarendon Press, Oxford, New York

    Google Scholar 

  49. Emin D, Holstein T (1969) Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann Phys (N Y) 53:439–520. https://doi.org/10.1016/0003-4916(69)90034-7

    Article  Google Scholar 

  50. Debnath JC, Wang J (2017) Magnetic and electrical response of Co-doped La0.7Ca0.3MnO3 manganites/insulator system. Phys B Condens Matter 504:58–62. https://doi.org/10.1016/j.physb.2016.10.017

    Article  CAS  Google Scholar 

  51. Belkahla A, Cherif K, Belmabrouk H, Bajahzar A, Dhahri J, Hlil EK (2019) Influence of non-magnetic ion In3+ on the magneto-transport properties in La0.7Bi0.05Sr0.15Ca0.1Mn1-xInxO3 (0 ≤ x ≤ 0.3) perovskite. Solid State Commun 294:16–22. https://doi.org/10.1016/j.ssc.2019.03.004

    Article  CAS  Google Scholar 

  52. Pal S, Banerjee A, Rozenberg E, Chaudhuri BK (2001) Polaron hopping conduction and thermoelectric power in LaMnO3+δ. J Appl Phys 89:4955–4961. https://doi.org/10.1063/1.1362411

    Article  CAS  Google Scholar 

  53. Liu GD, Che GC, Zhao ZX, Jia SL, Guo SQ, Zhang YZ, Chen H, Wu F, Dong C (1998) Electronic and magnetic properties of La4BaCu5−xMnxO13+δ. J Phys Condens Matter 10:8477–8484. https://doi.org/10.1088/0953-8984/10/38/008

    Article  CAS  Google Scholar 

  54. Ravi S, Kar M (2004) Study of magneto-resistivity in La1-xAgxMnO3 compounds. Phys B Condens Matter 348:169–176. https://doi.org/10.1016/j.physb.2003.11.087

    Article  CAS  Google Scholar 

  55. Ziese M, Srinitiwarawong C (1998) Polaronic effects on the resistivity of manganite thin films. Phys Rev B - Condens Matter Mater Phys 58:11519–11525. https://doi.org/10.1103/PhysRevB.58.11519

    Article  CAS  Google Scholar 

  56. Holstein T (1959) Studies of polaron motion. Part I. The molecular-crystal model. Ann Phys (NY) 8:325–342. https://doi.org/10.1016/0003-4916(59)90002-8

    Article  CAS  Google Scholar 

  57. Das K, Dasgupta P, Poddar A, Das I (2016) Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale. Sci Rep 6:20351. https://doi.org/10.1038/srep20351

    Article  CAS  Google Scholar 

  58. Zhou Y, Zhu X, Li S (2015) Effect of particle size on electric and magnetic transport properties of La0.67Sr0.33MnO3 coatings. PCCP 17:31161–31169. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  59. Reshi HA, Pillai S, Bhuwal D, Shelke V (2013) Nanostructure induced metal-insulator transition and enhanced low-field magnetoresistance in La0.7Sr0.3MnO3 systems. J Nanosci Nanotechnol 13:4608–4615. https://doi.org/10.1166/jnn.2013.7136

    Article  CAS  Google Scholar 

  60. Coey JMD (1999) Powder magnetoresistance (invited). J Appl Phys 85:5576–5581. https://doi.org/10.1063/1.369899

    Article  CAS  Google Scholar 

  61. Ziese M (2002) Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep Prog Phys 65:143–249. https://doi.org/10.1088/0034-4885/65/2/202

    Article  CAS  Google Scholar 

  62. Hwang HY, Cheong S-W, Ong NP, Batlogg B (1996) Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys Rev Lett 77:2041–2044. https://doi.org/10.1103/PhysRevLett.77.2041

    Article  CAS  Google Scholar 

  63. Peng HB, Zhao BR, Xie Z, Lin Y, Zhu BY, Hao Z, Ni YM, Tao HJ, Dong XL, Xu B (1999) Surface pattern and large low-field magnetoresistance in La0.5Ca0.5MnO3 films. Appl Phys Lett 74:1606–1608. https://doi.org/10.1063/1.123631

    Article  CAS  Google Scholar 

  64. Troyanchuk IO, Khalyavin DD, Trukhanov SV, Chobot GN, Szymczak H (1999) Effect of oxygen content on the magnetic state of La0.5Ca0.5MnO3-γ perovskites. JETP Lett 70:590–594. https://doi.org/10.1134/1.568220

    Article  CAS  Google Scholar 

  65. Abdallah-Ben Ammar A, Cheikhrouhou-Koubaa W, Koubaa M, Nowak S, Lecoq H, Sicard L, Ammar S, Cheikhrouhou A (2014) Effect of sodium substitution on the physical properties of solegel made La0.65Ca0.35MnO3 ceramics. Mater Chem Phys 148:751–758. https://doi.org/10.1016/j.matchemphys.2014.08.044

    Article  CAS  Google Scholar 

  66. Singh NK, Suresh KG, Nigam AK (2003) Itinerant electron metamagnetism and magnetocaloric effect in Dy(Co,Si)2. Solid State Commun 127:373–377. https://doi.org/10.1016/S0038-1098(03)00441-1

    Article  CAS  Google Scholar 

  67. Banerjee BK (1964) On a generalised approach to first and second order magnetic transitions. Phys Lett 12:16–17. https://doi.org/10.1016/0031-9163(64)91158-8

    Article  Google Scholar 

  68. Zhang H, Zeng D, Liu Z (2010) The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J Magn Magn Mater 322:2375–2380. https://doi.org/10.1016/j.jmmm.2010.02.040

    Article  CAS  Google Scholar 

  69. Chitra Devi E, Soibam I (2019) Law of approach to saturation in Mn–Zn ferrite nanoparticles. J Supercond Nov Magn 32:1293–1298. https://doi.org/10.1007/s10948-018-4823-4

    Article  CAS  Google Scholar 

  70. Lal G, Joshi J, Bhoi H, Punia K, Dolia SN, Choudhary BL, Barbar SK, Kumar S (2021) Impact of hydrogenation on the structural, dielectric and magnetic properties of La0.5Ca0.5MnO3. Appl Phys A Mater Sci Process 127:1–11. https://doi.org/10.1007/s00339-020-04206-w

    Article  CAS  Google Scholar 

  71. Zhang P, Lampen P, Phan TL, Yu SC, Thanh TD, Dan NH, Lam VD, Srikanth H, Phan MH (2013) Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1−xCaxMnO3 (0.2≤x≤0.4). J Magn Magn Mater 348:146–153. https://doi.org/10.1016/j.jmmm.2013.08.025

    Article  CAS  Google Scholar 

  72. Zhang H, Li Q, Li Y, Liu H, Dong X, Chen K, Hou Q, Huang Y (2012) Griffiths phase and reduced magnetization of La0.5Ca0.5MnO3 with different annealing temperature. J Supercond Nov Magn 25:1707–1712. https://doi.org/10.1007/s10948-012-1505-5

    Article  CAS  Google Scholar 

  73. Jiang W, Zhou X, Williams G, Mukovskii Y, Privezentsev R (2009) The evolution of Griffiths-phase-like features and colossal magnetoresistance in La1−xCaxMnO3 (0.18 ≤ x ≤ 0.27) across the compositional metal–insulator boundary. J Phys Condens Matter 21. https://doi.org/10.1088/0953-8984/21/41/415603

  74. Pramanik AK, Banerjee A (2016) Finite-size effect on evolution of Griffiths phase in manganite nanoparticles. J Phys Condens Matter 28. https://doi.org/10.1088/0953-8984/28/35/35LT02

  75. Salamon MB, Lin P, Chun SH (2002) Colossal magnetoresistance is a Griffiths singularity. Phys Rev Lett 88:1972031–1972034. https://doi.org/10.1103/PhysRevLett.88.197203

    Article  CAS  Google Scholar 

  76. Deisenhofer J, Braak D, Krug von Nidda H-A, Hemberger J, Eremina RM, Ivanshin VA, Balbashov AM, Jug G, Loidl A, Kimura T, Tokura Y (2005) Observation of a Griffiths phase in paramagnetic La1-xSrxMnO3. Phys Rev Lett 95:257202. https://doi.org/10.1103/PhysRevLett.95.257202

    Article  CAS  Google Scholar 

  77. Riahi K, Messaoui I, Cheikhrouhou-Koubaa W, Mercone S, Leridon B, Koubaa M, Cheikhrouhou A (2016) Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: a comparison between sol-gel, high-energy ball-milling and solid state process. J Alloys Compd 688:1028–1038. https://doi.org/10.1016/j.jallcom.2016.07.043

    Article  CAS  Google Scholar 

  78. Kim D, Revaz B, Zink BL, Hellman F, Rhyne JJ, Mitchell JF (2002) Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1-xCaxMnO3. Phys Rev Lett 89. https://doi.org/10.1103/PhysRevLett.89.227202

  79. Nasri M, Triki M, Dhahri E, Hlil EK (2013) Critical behavior in Sr-doped manganites La0.6Ca0.4-xSrxMnO3. J Alloys Compd 546:84–91. https://doi.org/10.1016/j.jallcom.2012.08.018

    Article  CAS  Google Scholar 

  80. Andrade VM, Vivas RJC, Pedro SS, Tedesco JCG, Rossi AL, Coelho AA, Rocco DL, Reis MS (2016) Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater 102:49–55. https://doi.org/10.1016/j.actamat.2015.08.080

    Article  CAS  Google Scholar 

  81. Amri N, Nasri M, Triki M, Dhahri E (2019) Synthesis and characterization of (1− x)(La0.6Ca0.4MnO3)/x(Sb2O3) ceramic composites. Phase Transit 92:52–64. https://doi.org/10.1080/01411594.2018.1550637

    Article  CAS  Google Scholar 

  82. Nasri A, Zouari S, Ellouze M, Hlil EK, Elhalouani F (2014) X-ray diffraction, magnetic and magnetocaloric properties of La0.6Ca0.4Mn1−xFexO3 (0 ≤ x ≤ 0.3) manganites prepared by the sol-gel method. Eur Phys J Plus 129:0–10. https://doi.org/10.1140/epjp/i2014-14180-5

    Article  CAS  Google Scholar 

  83. Yadav K, Singh HK, Varma GD (2012) Effect of La-doping on magnetic properties of Bi0.6-xLaxCa0.4MnO3 (0.0≤x≤0.6) perovskite manganites. Phys Scr 85. https://doi.org/10.1088/0031-8949/85/04/045704

  84. Jeddi M, Gharsallah H, Bekri M, Dhahri E, Hlil EK (2020) Improvement of magnetocaloric properties around room temperature in (1−x) La0.6Ca0.4MnO3/(x) La0.6Sr0.4MnO3 (0 ≤ x ≤ 1) composite system. Phase Transit 93:311–322. https://doi.org/10.1080/01411594.2020.1720678

    Article  CAS  Google Scholar 

  85. Nasri M, Khelifi J, Triki M, Dhahri E, Hlil EK (2016) Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites. J Alloys Compd 678:427–433. https://doi.org/10.1016/j.jallcom.2016.04.020

    Article  CAS  Google Scholar 

  86. Walha I, Dhahri E (2017) Magnetic and electrical properties induced by the silver in the lanthanum sites of La0.6Ca0.4MnO3 compound. J Alloys Compd 690:497–502. https://doi.org/10.1016/j.jallcom.2016.08.132

    Article  CAS  Google Scholar 

  87. El Boukili A, Mounkachi O, Hamedoun M, Lachkar P, Hlil EK, Benyoussef A, Balli M, Ez-Zahraouy H (2021) A study of structural, magnetic and magnetocaloric properties of (1−x)La0.6Ca0.4MnO3/xMn2O3 composite materials. J Alloys Compd 859:158392. https://doi.org/10.1016/j.jallcom.2020.158392

    Article  CAS  Google Scholar 

  88. Gharsallah H, Souissi A, Bejar M, Dhahri E, Hlil EK (2016) Magnetic anisotropy and superparamagnetism in La0.6Ca0.4MnO3, La0.6Sr0.4MnO3 and their mixed composition 0.875 La0.6Ca0.4MnO3/0.125 La0.6Sr0.4MnO3, agglomerated at different temperatures. Mater Chem Phys 182:429–438. https://doi.org/10.1016/j.matchemphys.2016.07.051

    Article  CAS  Google Scholar 

  89. Anwar MS, Ahmed F, Koo BH (2014) Dimensionality dependent magnetic and magnetocaloric response of La0.6Ca0.4MnO3 manganite. J Nanosci Nanotechnol 14:8745–8749. https://doi.org/10.1166/jnn.2014.9994

    Article  CAS  Google Scholar 

  90. Ho TA, Thanh TD, Ho TO, Phan MH, Phan TL, Yu SC (2015) Magnetic properties and magnetocaloric effect in Fe-doped La0.6Ca0.4MnO3 with short-range ferromagnetic order. J Appl Phys 117. https://doi.org/10.1063/1.4915103

  91. Das A, Chakraborty KR, Gupta SS, Kulshreshtha SK, Paranjpe SK (2001) Structural and magnetic ordering in La0.6Ca0.4MnO3. J Magn Magn Mater 237:41–46. https://doi.org/10.1016/S0304-8853(01)00495-4

    Article  CAS  Google Scholar 

  92. Gharsallah H, Jeddi M, Bejar M, Dhahri E, Hlil EK (2019) Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1−x) La0.6Sr0.4MnO3 composites. Appl Phys A Mater Sci Process 125. https://doi.org/10.1007/s00339-019-2851-y

  93. Walha I, Dhahri E (2016) Magnetic and electrical properties induced by the substitution of divalent by monovalent in the La0.6Ca0.4MnO3 compound. J Supercond Nov Magn 29:3001–3007. https://doi.org/10.1007/s10948-016-3744-3

    Article  CAS  Google Scholar 

  94. Hamad MA (2013) Magnetocaloric properties of La0.6Ca0.4MnO3. J Therm Anal Calorim 113:609–613. https://doi.org/10.1007/s10973-012-2723-6

    Article  CAS  Google Scholar 

  95. Krichene A, Boujelben W, Cheikhrouhou A (2013) Structural, magnetic and magnetocaloric properties in La0.5-xRexCa0.5MnO3 manganites (x = 0; 0.1 and Re = Gd, Eu and Dy). J Alloys Compd 550:75–82. https://doi.org/10.1016/j.jallcom.2012.09.036

    Article  CAS  Google Scholar 

  96. Wang H, Su K, Huang S, Ge J, Tan W, Huo D (2019) Magnetic properties and charge ordering in polycrystalline La1-xCaxMnO3 (x= 0.2, 0.5) manganite. J Supercond Nov Magn 32:3887–3891. https://doi.org/10.1007/s10948-019-05152-2

    Article  CAS  Google Scholar 

  97. Rozenberg E, Tsindlekht MI, Felner I, Sominski E, Gedanken A, Mukovskii YM, Lee CE (2009) Size and nonstoichiometry effects on magnetic properties La0.5Ca0.5MnO3 manganite. IEEE Trans Magn 45:2576–2579. https://doi.org/10.1109/TMAG.2009.2018894

    Article  CAS  Google Scholar 

  98. Sarkar T, Ghosh B, Raychaudhuri AK, Chatterji T (2008) Crystal structure and physical properties of half-doped manganite nanocrystals with size< 100nm. Phys Rev B - Condens Matter Mater Phys 77. https://doi.org/10.1103/PhysRevB.77.235112

  99. Giri SK, Nath TK (2011) Suppression of charge and antiferromagnetic ordering in La0.5Ca0.5MnO3 nanoparticles. J Nanosci Nanotechnol 11:4806–4814

    Article  CAS  Google Scholar 

  100. Das A, Babu PD, Chatterjee S, Nigam AK (2004) Ionic size effect in charge-ordered La0.5Ca0.5MnO3. Phys Rev B - Condens Matter Mater Phys 70:1–7. https://doi.org/10.1103/PhysRevB.70.224404

    Article  CAS  Google Scholar 

  101. Xia W, Li L, Wu H, Xue P, Zhu X (2017) Molten salt route of La1−xCaxMnO3 nanoparticles: Microstructural characterization, magnetic and electrical transport properties. Mater Charact 131:128–134. https://doi.org/10.1016/j.matchar.2017.07.002

    Article  CAS  Google Scholar 

  102. Chen X, Wang Z, Li R, Shen B, Zhan W, Sun J, Chen J, Yan C (2000) The magnetic and transport properties of Fe doped La0.5Ca0.5MnO3. J Appl Phys 87:5594–5596. https://doi.org/10.1063/1.372461

    Article  CAS  Google Scholar 

  103. Wang KY, Song WH, Dai JM, Ye SL, Wang SG, Sun YP, Du JJ (2001) The influence of Cu doping on the charge-ordering of La0.5Ca0.5MnO3. Phys Status Solidi Appl Res 184:515–522. https://doi.org/10.1002/1521-396X(200104)184:2<515::AID-PSSA515>3.0.CO;2-S

    Article  CAS  Google Scholar 

  104. Rubi D, Duhalde S, Terzzoli MC, Villafuerte M (2002) Correlation between structural and transport properties of La0.5Ca0.5MnO3 thin films grown by PLD. Appl Surf Sci 197–198:536–541. https://doi.org/10.1016/S0169-4332(02)00337-9

    Article  Google Scholar 

  105. Smari M, Hamouda R, Walha I, Dhahri E, Mompeán FJ, García-Hernández M (2015) Magnetic and magnetoresistance in half-doped manganite La0.5Ca0.5MnO3 and La0.5Ca0.4Ag0.1MnO3. J Alloys Compd 644:632–637. https://doi.org/10.1016/j.jallcom.2015.05.026

    Article  CAS  Google Scholar 

  106. Wang KF, Xiao Q, Yu H, Zeng M, Zhang MF, Liu JM (2005) Magneto-transport and specific heat behavior of Cd-doped La0.5Ca0.5MnO3. J Magn Magn Mater 285:130–137. https://doi.org/10.1016/j.jmmm.2004.07.026

    Article  CAS  Google Scholar 

  107. Gonzalez-Calbet JM, Herrero E, Rangavittal N, Alonso JM, Martinez JL, Vallet-Regi M (1999) Ordering of oxygen vacancies and magnetic properties in La0.5 Ca0.5MnO3-δ (0≤δ≤0.5). J Solid State Chem 148:158–168. https://doi.org/10.1006/jssc.1999.8441

    Article  CAS  Google Scholar 

  108. Li R-W, Sun J-R, Wang Z-H, Zhang S-Y, Shen B-G (2000) Magnetic and transport properties of Sn-doped La0.5Ca0.5MnO3, J. Phys. D. Appl Phys 33:1982–1984. https://doi.org/10.1088/0022-3727/33/16/308

    Article  CAS  Google Scholar 

  109. Awana VPS, Tripathi R, Balamurugan S, Kumar A, Dogra A, Kishan H (2009) Thermal hysteresis in electrical transport of charge ordered La0.5Ca0.5MnO3 manganites. J Alloys Compd 475:L13–L16. https://doi.org/10.1016/j.jallcom.2008.07.077

    Article  CAS  Google Scholar 

Download references

Funding

1. University Grants Commission via the Innovative Program

2. Department of Science and Technology, India via the FIST scheme

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Kurian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jithin, P., Bitla, Y., Patidar, M.M. et al. Enhanced magnetoresistance and evolution of Griffiths-like phase in La1−xCaxMnO3 (x = 0.4, 0.5) nanoparticles. J Nanopart Res 25, 207 (2023). https://doi.org/10.1007/s11051-023-05847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-023-05847-7

Keywords

Navigation