Skip to main content
Log in

Diffusion of Re(VII), Se(IV) and Cr(VI) in compacted GMZ bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The diffusion of Re(VII), Se(IV) and Cr(VI) in compacted Gaomiaozi bentonite was conducted by an integrated diffusion setup. The effective diffusion coefficient and the rock capacity factor of Re(VII), Se(IV) and Cr(VI) were measured. Re(VII) and Cr(VI) were excluded from the surface of bentonite particles with an accessible porosity of 0.40 and 0.23. The geometric factor decreased in a sequence of Cr(VI) < Se(IV) < Re(VII), indicating that Cr(IV) had a lower tortuosity, a larger diffusion pore diameter, and a stronger anionic exclusion effect from the surface of bentonite platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. He J, Ma B, Kang M, Wang C, Nie Z, Liu C (2017) Migration of 75Se(IV) in crushed Beishan granite: effects of the iron content. J Hazard Mater 324:564–572. https://doi.org/10.1016/j.jhazmat.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  2. Van Loon LR, Leupin OX, Cloet V (2018) The diffusion of SO42− in Opalinus clay: measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repositories. Appl Geochem 95:19–24. https://doi.org/10.1016/j.apgeochem.2018.05.009

    Article  CAS  Google Scholar 

  3. Wang X, Liu C, Wang C, Li C, Chen T (2020) Adsorption and diffusion of some important radionuclides in Beishan granites and Gaomiaozi Bentonites. Scientia Sinica Chimica 50(11):1585–1599. https://doi.org/10.1360/SSC-2020-0138

    Article  Google Scholar 

  4. Kasar S, Kumar S, Bajpai RK, Tomar BS (2016) Diffusion of Na(I), Cs(I), Sr(II) and Eu(III) in smectite rich natural clay. J Environ Radioactiv 151:218–223. https://doi.org/10.1016/j.jenvrad.2015.10.012

    Article  CAS  Google Scholar 

  5. Aldaba D, Rigol A, Vidal M (2010) Diffusion experiments for estimating radiocesium and radiostrontium sorption in unsaturated soils from Spain: comparison with batch sorption data. J Hazard Mater 181(1–3):1072–1079. https://doi.org/10.1016/j.jhazmat.2010.05.124

    Article  CAS  PubMed  Google Scholar 

  6. Tachi Y, Yotsuji K, Seida Y, Yui M (2011) Diffusion and sorption of Cs+, I and HTO in samples of the argillaceous Wakkanai formation from the Horonobe URL, Japan: clay-based modeling approach. Geochim Cosmochim Acta 75(22):6742–6759. https://doi.org/10.1016/j.gca.2011.08.039

    Article  CAS  Google Scholar 

  7. Savoye S, Schlegel ML, Frasca B (2021) Mobility of selenium oxyanions in clay-rich media: a combined batch and diffusion experiments and synchrotron-based spectroscopic investigation. Appl Geochem 128:104932. https://doi.org/10.1016/j.apgeochem.2021.104932

    Article  CAS  Google Scholar 

  8. Glaus MA, Birgersson M, Karnland O, Van Loon LR (2013) Seeming steady-state uphill diffusion of 22Na+ in compacted montmorillonite. Environ Sci Technol 47(20):11522–11527. https://doi.org/10.1021/es401968c

    Article  CAS  PubMed  Google Scholar 

  9. Van Loon LR, Soler JM, Bradbury MH (2003) Diffusion of HTO, 36Cl- and 125I- in opalinus clay samples from mont terri: effect of confining pressure. J Contam Hydrol 61(1–4):73–83. https://doi.org/10.1016/S0169-7722(02)00114-6

    Article  CAS  PubMed  Google Scholar 

  10. Tsai T-L, Tsai S-C, Shih Y-H, Chen L-C, Lee C-P, Su T-Y (2017) Diffusion characteristics of HTO and 99TcO4 in compacted Gaomiaozi (GMZ) bentonite. Nucl Sci Tech 28(5):67. https://doi.org/10.1007/s41365-017-0221-z

    Article  CAS  Google Scholar 

  11. Wu H, Huang W, Duan ZQ, Luo MB, Wang ZF, Hua R (2020) Investigation of Se(IV) diffusion in compacted Tamusu clay by capillary method. J Radioanal Nucl Chem 324(2):903–911. https://doi.org/10.1007/s10967-020-07089-6

    Article  CAS  Google Scholar 

  12. Rorig-Dalgaard I, Ottosen LM, Hansen KK (2012) Diffusion and electromigration in clay bricks influenced by differences in the pore system resulting from firing. Constr Build Mater 27(1):390–397. https://doi.org/10.1016/j.conbuildmat.2011.07.031

    Article  Google Scholar 

  13. Li X, Meng S, Puhakka E, Ikonen J, Liu L, Siitari-Kauppi M (2020) A modification of the electromigration device and modelling methods for diffusion and sorption studies of radionuclides in intact crystalline rocks. J Contam Hydrol 231:103585. https://doi.org/10.1016/j.jconhyd.2019.103585

    Article  CAS  PubMed  Google Scholar 

  14. Elo O, Holtta P, Kekalainen P, Voutilainen M, Huittinen N (2019) Neptunium(V) transport in granitic rock: a laboratory scale study on the influence of bentonite colloids. Appl Geochem 103:31–39. https://doi.org/10.1016/j.apgeochem.2019.01.015

    Article  CAS  Google Scholar 

  15. Kong J, Lee CP, Sun YZ, Hua R, Liu WG, Wang ZF, Li Y, Wang YD (2021) Anion exclusion and sorption effect for compacted bentonite: the dependency of diffusion coefficients and capacity of HTO and Se(IV). J Radioanal Nucl Chem 328(2):717–725. https://doi.org/10.1007/s10967-021-07688-x

    Article  CAS  Google Scholar 

  16. Van Loon LR, Baeyens B, Bradbury MH (2005) Diffusion and retention of sodium and strontium in Opalinus clay: comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations. Appl Geochem 20(12):2351–2363. https://doi.org/10.1016/j.apgeochem.2005.08.008

    Article  CAS  Google Scholar 

  17. Tachi Y, Yotsuji K (2014) Diffusion and sorption of Cs+, Na+, I and HTO in compacted sodium montmorillonite as a function of porewater salinity: integrated sorption and diffusion model. Geochim Cosmochim Acta 132:75–93. https://doi.org/10.1016/j.gca.2014.02.004

    Article  CAS  Google Scholar 

  18. Wu T, Amayri S, Drebert J, Van Loon LR, Reich T (2009) Neptunium(V) sorption and diffusion in Opalinus clay. Environ Sci Technol 43(17):6567–6571

    Article  CAS  Google Scholar 

  19. Joseph C, Mibus J, Trepte P, Müller C, Brendler V, Dan MP, Jiao Y, Kersting AB, Zavarin M (2017) Long-term diffusion of U(VI) in bentonite: dependence on density. Sci Total Environ 575:207–218. https://doi.org/10.1016/j.scitotenv.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  20. Aromaa H, Voutilainen M, Ikonen J, Yli-Kaila M, Poteri A, Siitari-Kauppi M (2019) Through diffusion experiments to study the diffusion and sorption of HTO, 36Cl, 133Ba and 134Cs in crystalline rock. J Contam Hydrol 222:101–111. https://doi.org/10.1016/j.jconhyd.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  21. Glaus MA, Frick S, Van Loon LR (2020) A coherent approach for cation surface diffusion in clay minerals and cation sorption models: diffusion of Cs+ and Eu3+ in compacted illite as case examples. Geochim Cosmochim Acta 274:79–96. https://doi.org/10.1016/j.gca.2020.01.054

    Article  CAS  Google Scholar 

  22. Wu T, Yang Y, Wang Z, Shen Q, Tong Y, Wang M (2020) Anion diffusion in compacted clays by pore-scale simulation and experiments. Water Resour Res 56:e2019WR027037. https://doi.org/10.1029/2019wr027037

    Article  Google Scholar 

  23. Krejci P, Gimmi T, Van Loon LR (2021) On the concentration-dependent diffusion of sorbed cesium in Opalinus Clay. Geochim Cosmochim Acta 298:149–166. https://doi.org/10.1016/j.gca.2021.01.012

    Article  CAS  Google Scholar 

  24. Wu T, Wang H, Zheng Q, Zhao YL, Van Loon LR (2014) Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl Clay Sci 101:136–140. https://doi.org/10.1016/j.clay.2014.07.028

    Article  CAS  Google Scholar 

  25. Wang Z, Wang H, Li Q, Xu M, Guo Y, Li J, Wu T (2016) pH effect on Re(VII) and Se(IV) diffusion in compacted GMZ bentonite. Appl Geochem 73:1–7. https://doi.org/10.1016/j.apgeochem.2016.07.015

    Article  CAS  Google Scholar 

  26. Savoye S, Goutelard F, Beaucaire C, Charles Y, Fayette A, Herbette M, Larabi Y, Coelho D (2011) Effect of temperature on the containment properties of argillaceous rocks: the case study of Callovo-Oxfordian claystones. J Contam Hydrol 125(1):102–112. https://doi.org/10.1016/j.jconhyd.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  27. Glaus MA, Rossé R, Van Loon LR, Yaroshchuk AE (2008) Tracer diffusion in sintered stainless steel filters: measurement of effective diffusion coefficients and implications for diffusion studies with compacted clays. Clays Clay Miner 56(6):677–685. https://doi.org/10.1346/CCMN.2008.0560608

    Article  CAS  Google Scholar 

  28. Luraschi P, Gimmi T, Van Loon LR, Shafizadeh A, Churakov SV (2020) Evolution of HTO and 36Cl- diffusion through a reacting cement-clay interface (OPC paste-Na montmorillonite) over a time of six years. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2020.104581

    Article  Google Scholar 

  29. Peak D, Saha UK, Huang PM (2006) Selenite adsorption mechanisms on pure and coated montmorillonite: an EXAFS and XANES spectroscopic study. Soil Sci Soc Am J 70(1):192–203. https://doi.org/10.2136/sssaj2005.0054

    Article  CAS  Google Scholar 

  30. Wu T, Dai W, Xiao G, Shu F, Yao J, Li J (2012) Influence of dry density on HTO diffusion in GMZ bentonite. J Radioanal Nucl Chem 292(2):853–857. https://doi.org/10.1007/s10967-011-1523-y

    Article  CAS  Google Scholar 

  31. González Sánchez F, Van Loon LR, Gimmi T, Jakob A, Glaus MA, Diamond LW (2008) Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl Geochem 23(12):3840–3851. https://doi.org/10.1016/j.apgeochem.2008.08.008

    Article  CAS  Google Scholar 

  32. Wu T, Wang Z, Tong Y, Wang Y, Van Loon LR (2018) Investigation of Re(VII) diffusion in bentonite by through-diffusion and modeling techniques. Appl Clay Sci 166:223–229. https://doi.org/10.1016/j.clay.2018.08.023

    Article  CAS  Google Scholar 

  33. Choi J-W, Oscarson D (1996) Diffusive transport through compacted Na-and Ca-bentonite. J Contam Hydrol 22(3):189–202. https://doi.org/10.1016/0169-7722(95)00081-X

    Article  CAS  Google Scholar 

  34. He JG, Qiao XL, Shi YL, Li Y, Yang XY, Zhou WQ, Liu CL (2017) Influence of inherent iron and oxygen concentrations on selenite sorption process using bentonite. Sci China Chem 60(9):1258–1264. https://doi.org/10.1007/s11426-017-9091-4

    Article  CAS  Google Scholar 

  35. Vanysek P (2000) Ionic conductivity and diffusion at infinite dilution. CRC Handbook Chem Phys 83(5):76–78

    Google Scholar 

  36. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor General Crystallogr 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  37. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Huzhou science and technology planning project (2021GZ60) Special, Special Branch project of South Taihu Lake and Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Geng, Z., Feng, Z. et al. Diffusion of Re(VII), Se(IV) and Cr(VI) in compacted GMZ bentonite. J Radioanal Nucl Chem 331, 2311–2317 (2022). https://doi.org/10.1007/s10967-022-08278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08278-1

Keywords

Navigation