Skip to main content

Advertisement

Log in

Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration

  • Special Issue: ESB 2017
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ten Cate AR. Gross and micro anatomy. In: Zarb GA, Carlsson GE, Sessle BJ, Mohl ND, editors. Temporomandibular joint and masticatory muscle disorders. 2nd ed. Copenhagen: Munksgaard; 1994. p. 48–65.

  2. Minarelli AM, Del Santo Júnior M, Liberti EA. The structure of the human temporomandibular joint disc: a scanning electron microscopy study. J Orofac Pain. 1997;11:95–100.

    CAS  Google Scholar 

  3. Kalpakci KN, Willard VP, Wong ME, Athanasiou KA. An Interspecies Comparison of the Temporomandibular Joint Disc. J Dent Res. 2011;90:193–8.

    Article  CAS  Google Scholar 

  4. Mayne R. Cartilage collagens. What is their function, and are they involved in articular disease? Arthritis Rheum. 1989;32:241–6.

    Article  CAS  Google Scholar 

  5. Takahashi H, Sato I. Ultrastructure of collagen fibers and distribution of extracellular matrix in the temporomandibular disk of the human fetus and adult. Okajimas Folia Anat Jpn. 2001;78:211–21.

    Article  CAS  Google Scholar 

  6. Detamore MS, Hegde JN, Wagle RR, Almarza AJ, Montufar-Solis D, Duke PJ, Athanasiou KA. Cell type and distribution in the porcine temporomandibular joint disc. J Oral Maxillofac Surg. 2006;64:243–8.

    Article  Google Scholar 

  7. Detamore MS, Orfanos JG, Almarza AJ, French MM, Wong ME, Athanasiou KA. Quantitative analysis and comparative regional investigation of the extracellular matrix of the porcine temporomandibular joint disc. Matrix Biol. 2005;24:45–57.

    Article  CAS  Google Scholar 

  8. Axelsson S, Holmlund A, Hjerpe A. Glycosaminoglycans in normal and osteoarthrotic human temporomandibular joint disks. Acta Odontol Scand. 1992;50:113–9.

    Article  CAS  Google Scholar 

  9. Willard VP, Zhang L, Athanasiou KA. Tissue engineering of the temporomandibular joint. Compr Biomaterials . 2011;5:221–35.

    Google Scholar 

  10. Farrar WB, McCarty WL. Inferior joint space arthrography and characteristics of condylar paths in internal derangements of the TMJ. J Prosthet Dent. 1979;41:548–55.

    Article  CAS  Google Scholar 

  11. Manfredini D, Guarda-Nardini L, Winocur E, Piccotti F, Ahlberg J, Lobbezoo F. Research diagnostic criteria for temporomandibular disorders: a systematic review of axis I epidemiologic findings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:453–62.

    Article  Google Scholar 

  12. Dolwick MF. The role of temporomandibular joint surgery in the treatment of patients with internal derangement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:150–5.

    Article  CAS  Google Scholar 

  13. Feinerman DM, Piecuch JF. Long-term retrospective analysis of twenty-three Proplast-Teflon temporomandibular joint interpositional implants. Int J Oral Maxillofac Surg. 1993;22:11–6.

    Article  CAS  Google Scholar 

  14. Dimitroulis G. A critical review of interpositional grafts following temporomandibular joint discectomy with an overview of the dermis-fat graft. Int J Oral Maxillofac Surg. 2011;40:561–8.

    Article  CAS  Google Scholar 

  15. Dimitroulis G. Condylar morphology after temporomandibular joint discectomy with interpositional abdominal dermis-fat graft. Int J Oral Maxillofac Surg. 2011;69:439–46.

    Article  Google Scholar 

  16. Ahtiainen K, Mauno J, Ellä V, Hagström J, Lindqvist C, Miettinen S, Ylikomi T, Kellomäki M, Seppänen R. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. J R Soc Interface. 2013;10:20130287.

    Article  Google Scholar 

  17. Almarza AJ, Athanasiou KA. Evaluation of three growth factors in combinations of two for temporomandibular joint disc tissue engineering. Oral Biol. 2006;51:215–21.

    Article  CAS  Google Scholar 

  18. Hagandora CK, Gao J, Wang Y, Almarza AJ. Poly (glycerol sebacate): a novel scaffold material for temporomandibular joint disc engineering. Tissue Eng Part A. 2013;19:729–37.

    Article  CAS  Google Scholar 

  19. Legemate K, Tarafder S, Jun Y, Lee CH. Engineering human TMJ discs with protein-releasing 3D-printed scaffolds. J Dent Res. 2016;95:800–7.

    Article  CAS  Google Scholar 

  20. Allen KD, Athanasiou KA. Scaffold and growth factor selection in temporomandibular joint disc engineering. J Dent Res. 2008;87:180–5.

    Article  CAS  Google Scholar 

  21. Brown BN, Chung WL, Almarza AJ, Pavlick MD, Reppas SN, Ochs MW, Russell AJ, Badylak SF. Inductive, scaffold-based, regenerative medicine approach to reconstruction of the temporomandibular joint disk. J Oral Maxillofac Surg. 2012;70:2656–68.

    Article  Google Scholar 

  22. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38:1139–51.

    Article  CAS  Google Scholar 

  23. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  Google Scholar 

  24. Chandy T, Sharma C. Chitosan-as a biomaterial. Biomater Artif Cell Artif Organs. 1990;18:1–24.

    Article  CAS  Google Scholar 

  25. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Mater (Basel). 2013;6:1285–309.

    Article  CAS  Google Scholar 

  26. Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol. 2015;35:410–24.

    Article  Google Scholar 

  27. Li Z, Zhang M. Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005;75:485–93.

    Article  Google Scholar 

  28. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials . 2005;26:3919–28.

    Article  CAS  Google Scholar 

  29. Kawashima N. Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol. 2012;57:1439–58.

    Article  Google Scholar 

  30. Nemeth CL, Janebodin K, Yuan AE, Dennis JE, Reyes M, Kim DH. Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A. 2014;20:2817–29.

    Article  CAS  Google Scholar 

  31. Bakopoulou A, Apatzidou D, Aggelidou E, Gousopoulou E, Leyhausen G, Volk J, Kritis A, Koidis P, Geurtsen W. Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties. Stem Cell Res Ther. 2017;8:247.

    Article  Google Scholar 

  32. Westin CB, Trinca RB, Zuliani C, Coimbra IB, Moraes ÂM. Differentiation of dental pulp stem cells into chondrocytes upon culture on porous chitosan-xanthan scaffolds in the presence of kartogenin. Mater Sci Eng C Mater Biol Appl. 2017;80:594–602.

    Article  CAS  Google Scholar 

  33. Mata M, Milian L, Oliver M, Zurriaga J, Sancho-Tello M, de Llano JJM, Carda C. In Vivo articular cartilage regeneration using human dental pulp stem cells cultured in an alginate scaffold: A preliminary study. Stem Cells Int. 2017;2017:8309256.

    Article  Google Scholar 

  34. Garland CB, Pomerantz JH. Regenerative strategies forcraniofacial disorders. Front Physiol. 2012;3:453.

    Article  Google Scholar 

  35. Xu B, Xu H, Wu Y, Li X, Zhang Y, Ma X, Yang Q. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds. PLoS ONE. 2015;10:e0124774.

    Article  Google Scholar 

  36. Noel S, Liberelle B, Robitaille L, De Crescenzo G. Quantification of primary amine groups available for subsequent biofunctionalization of polymer surfaces. Bioconjug Chem. 2011;22:1690–9.

    Article  CAS  Google Scholar 

  37. Bakopoulou A, Papachristou E, Bousnaki M, Hadjichristou C, Kontonasaki E, Theocharidou A, Papadopoulou L, Kantiranis N, Zachariadis G, Leyhausen G, Geurtsen W, Koidis P. Human treated dentin matrices combined with Zn-doped, Mg-based bioceramic scaffolds and human dental pulp stem cells towards targeted dentin regeneration. Dent Mater. 2016;32:e159–75.

    Article  CAS  Google Scholar 

  38. Amirikia M, Shariatzadeh SMA, Jorsaraei SGA, Soleimani Mehranjani M. Impact of pre-incubation time of silk fibroin scaffolds in culture medium on cell proliferation and attachment. Tissue Cell. 2017;49:657–63.

    Article  CAS  Google Scholar 

  39. Yu C, Young S, Russo V, Amsden BG, Flynn LE. Techniques for the Isolation of high-quality RNA from cells encapsulated in chitosan hydrogels. Tissue Eng Part C Methods. 2013;19:829–38.

    Article  CAS  Google Scholar 

  40. Poon L, Wilson LD, Headley JV. Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydr Polym. 2014;109:92–101.

    Article  CAS  Google Scholar 

  41. Kazemirad S, Heris HK, Mongeau L. Experimental methods for the characterization of the frequency-dependent viscoelastic properties of soft materials. J Acous Soc Am. 2013;133:3186–97.

    Article  Google Scholar 

  42. Mano JF. Viscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis. Macromol Biosci. 2008;8:69–76.

    Article  CAS  Google Scholar 

  43. Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46:199–205.

    Article  CAS  Google Scholar 

  44. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57:397–430.

    Article  CAS  Google Scholar 

  45. Yao K, Li J, Yo F, Yin Y. Chitosan-based hydrogels: Functions and applications. Boca Raton, Florida, United States: CRC Press; 2017.

  46. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57:19–34.

    Article  CAS  Google Scholar 

  47. Skarmoutsou A, Lolas G, Charitidis CA, Chatzinikolaidou M, Vamvakaki M, Farsari M. Nanomechanical properties of hybrid coatings for bone tissue engineering. J Mech Behav Biomed Mater. 2013;25:48–62.

    Article  CAS  Google Scholar 

  48. Nava MM, Draghi L, Giordano C, Pietrabissa R. The effect of scaffold pore size in cartilage tissue engineering. J Appl Biomater Funct Mater. 2016;14:e223–9.

    CAS  Google Scholar 

  49. Lien SM, Ko LY, Huang TJ. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–9.

    Article  CAS  Google Scholar 

  50. Zhang ZZ, Jiang D, Ding JX, Wang SJ, Zhang L, Zhang JY, Qi YS, Chen XS, Yu JK. Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 2016;43:314–26.

    Article  CAS  Google Scholar 

  51. Lowe J, Almarza AJ. A review of in-vitro fibrocartilage tissue engineered therapies with a focus on the temporomandibular joint. Arch Oral Biol. 2017;83:193–201.

    Article  CAS  Google Scholar 

  52. Eyre DR, Muir H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J. 1976;157:267–70.

    Article  CAS  Google Scholar 

  53. Cheung HS. Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Conn Tis Res. 1987;16:343–56.

    Article  CAS  Google Scholar 

  54. Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Sox9 is required for cartilage formation. Nat Genet. 1999;22:85–9.

    Article  CAS  Google Scholar 

  55. Hargus G, Kist R, Kramer J, Gerstel D, Neitz A, Scherer G, Rohwedel J. Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro. Int J Dev Biol. 2008;52:323–32.

    Article  CAS  Google Scholar 

  56. Wang L, Stegemann JP. Extraction of high quality RNA from polysaccharide matrices using cetyltrimethylammonium bromide. Biomaterials . 2010;31:1612–8.

    Article  CAS  Google Scholar 

  57. Zaucke F, Dinser R, Maurer P, Paulsson M. Cartilage oligomeric matrix protein (COMP) and collagen IX are sensitive markers for the differentiation state of articular primary chondrocytes. Biochem J. 2001;358:17–24.

    Article  CAS  Google Scholar 

  58. Park Y, Hosomichi J, Ge C, Xu J, Franceschi R, Kapila S. Immortalization and characterization of mouse temporomandibular joint disc cell clones with capacity for multi-lineage differentiation. Osteoarthr Cartil. 2015;23:1532–42.

    Article  CAS  Google Scholar 

  59. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res. 1994;212:97–104.

    Article  CAS  Google Scholar 

  60. Valiyaveettil M, Mort JS, McDevitt CA. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint. Connect Tissue Res. 2005;46:83–91.

    Article  CAS  Google Scholar 

  61. Wang CC, Yang KC, Lin KH, Liu HC, Lin FH. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32:7118–26.

    Article  CAS  Google Scholar 

  62. Ghosh S, Gutierrez V, Fernández C, Rodriguez-Perez MA, Viana JC, Reis RL, Mano JF. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: Effect of porosity and pore size. Acta Biomater. 2008;4:950–9.

    Article  CAS  Google Scholar 

  63. Kuo J, Zhang L, Bacro T, Yao H. The region-dependent biphasic viscoelastic properties of human temporomandibular joint discs under confined compression. J Biomech. 2010;43:1316–21.

    Article  Google Scholar 

  64. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014;20:596–608.

    Article  Google Scholar 

  65. Wendt D, Stroebel S, Jakob M, John GT, Martin I. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions. Biorheology. 2006;4:481–8.

    Google Scholar 

  66. Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005;37:313–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a scholarship from the Greek State Scholarship Foundation (IKY), funded by the action “Enhancing human research potential through doctoral research” from resources of the European Program “Development of Human Potential, Education and Lifelong Learning”, 2014–2020 funded by the European Social Fund (ESF) and National Resources (MIS 5000432).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Koidis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousnaki, M., Bakopoulou, A., Papadogianni, D. et al. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration. J Mater Sci: Mater Med 29, 97 (2018). https://doi.org/10.1007/s10856-018-6109-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-018-6109-6

Navigation