Skip to main content
Log in

Enhanced energy storage performance of silver niobate-based antiferroelectric ceramics by two-step sintering mothed

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AgNbO3 lead-free antiferroelectric (AFE) ceramics are attractive candidates for energy storage applications and power electronic systems. In this study, AgNbO3 ceramics are synthesized by single-step sintering (SSS) and two-step sintering (TSS) processes under oxygen-free atmosphere, and their energy storage performance is compared. The prepared ceramic materials show characteristic AFE double hysteresis (P–E) loop and excellent energy storage performance. Especially, the AgNbO3 ceramic materials prepared by TSS achieve a maximum recoverable storage density (Wrec) of 2.32 J/cm3 under 150 kV/cm by reducing the remnant polarization (Pr), which is 36% higher than that of the material prepared by SSS (1.7 J/cm3). Furthermore, the AgNbO3 ceramic exhibits outstanding temperature stability. Specifically, the variation in Wrec is less than 6% when the temperature increases from 30 to 120 °C. These remarkable properties are mainly attributed to the high relative density, small grain size, and excellent energy storage performance of the ceramic prepared by TSS, which extends the particle rearrangement time at low temperature and promotes the uniform grain growth at high temperature. Overall, this study can serve as a useful reference for the development of capacitors in pulsed power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D.X. Li, X.X. Zeng, Z.P. Li, Z.Y. Shen, H. Hao, W.P. Luo, X.C. Wang, F.S. Song, Z.M. Wang, Y.M. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 10, 675–703 (2021)

    Article  CAS  Google Scholar 

  2. P.Y. Zhao, Z.M. Cai, L.W. Wu, C.Q. Zhu, L.T. Li, X.H. Wang, Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram. 10, 1153–1193 (2021)

    Article  CAS  Google Scholar 

  3. K.L. Zou, Y. Dan, H.J. Xu, Q.F. Zhang, Y.M. Lu, H.T. Huang, Y.B. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  4. B. Xu, J. Iniguez, L. Bellaiche, Designing lead-free antiferroelectrics for energy storage. Nat. Commun. 8, 15682 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601727

    Article  PubMed  Google Scholar 

  6. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. (2017). https://doi.org/10.1002/adma.201701824

    Article  PubMed  PubMed Central  Google Scholar 

  7. Y. Huang, F. Li, H. Hao, F.Q. Xia, H.X. Liu, S.J. Zhang, (Bi0.51 Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J. Materiomics 5, 385–393 (2019)

    Article  Google Scholar 

  8. H.L. Ma, M.A. Ismael, Preparation and optimization of silver niobate-based lead-free ceramic energy storage materials. Ceram. Int. 48, 32613–32627 (2022)

    Article  CAS  Google Scholar 

  9. X.H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. (2013). https://doi.org/10.1142/S2010135X13300016

    Article  Google Scholar 

  10. N.N. Luo, K. Han, F.P. Zhuo, L.J. Liu, X.Y. Chen, B.L. Peng, X.P. Wang, Q. Feng, Y.Z. Wei, Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J. Mater. Chem. C 7, 4999–5008 (2019)

    Article  CAS  Google Scholar 

  11. N.N. Luo, K. Han, F.N. Zhuo, C. Xu, G.Z. Zhang, L.J. Liu, X.Y. Chen, C.Z. Hu, H.F. Zhou, Y.Z. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A 7, 14118–14128 (2019)

    Article  CAS  Google Scholar 

  12. J.M. Ye, G.S. Wang, M.X. Zhou, N.T. Liu, X.F. Chen, S. Li, F. Cao, X.L. Dong, Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 5639–5645 (2019)

    Article  CAS  Google Scholar 

  13. H. Shimizu, H. Guo, S.E. Reyes-Lillo, Y. Mizuno, K.M. Rabe, C.A. Randall, Lead-free antiferroelectric: xCaZrO3-(1-x) NaNbO3 system (0≤x≥0.10). Dalton Trans. 44, 10763–10772 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. L. Zhao, J. Gao, Q. Liu, S. Zhang, J.F. Li, Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping. ACS Appl. Mater. Interfaces 10, 819–826 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Xu, Y. Guo, Q. Liu, Y. Yin, J. Bai, L. Lin, J. Tian, Y. Tian, Enhanced energy density in Mn-doped (1–x)AgNbO3-xCaTiO3 lead-free antiferroelectric ceramics. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153260

    Article  Google Scholar 

  16. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H.X. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4, 17279–17287 (2016)

    Article  CAS  Google Scholar 

  17. L. Zhao, Q. Liu, S.J. Zhang, J.F. Li, Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C 4, 8380–8384 (2016)

    Article  CAS  Google Scholar 

  18. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.F. Wei, G. Viola, I. Abrahams, H.X. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5, 17525–17531 (2017)

    Article  CAS  Google Scholar 

  19. S. Li, T.F. Hu, H.C. Nie, Z.Q. Fu, C.H. Xu, F.F. Xu, G.S. Wang, X.L. Dong, Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater. 34, 417–426 (2021)

    Article  Google Scholar 

  20. J. Gao, Y.C. Zhang, L. Zhao, K.Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S.J. Zhang, J.F. Li, Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 7, 2225–2232 (2019)

    Article  CAS  Google Scholar 

  21. Z.Z. Xie, H.B. Liu, A novel method of preparing antiferroelectric silver niobate AgNbO3 ceramics. Ceram. Int. 46, 6955–6957 (2020)

    Article  CAS  Google Scholar 

  22. X.C. Wang, W.Q. Cai, Z. Xiao, G.G. Yang, X.M. Yu, J.W. Chen, D.C. Chen, Q.F. Zhang, M. Chen, High energy-storage performance of lead-free AgNbO3 antiferroelectric ceramics fabricated via a facile approach. J. Eur. Ceram. Soc. 41, 5163–5169 (2021)

    Article  CAS  Google Scholar 

  23. S. Zinatloo-Ajabshir, M.H. Esfahani, C.A. Marjerrison, J. Greedan, M. Behzad, Enhanced electrochemical hydrogen storage performance of lanthanum zirconium oxide ceramic microstructures synthesized by a simple approach. Ceram. Int. 49, 37415–37422 (2023)

    Article  CAS  Google Scholar 

  24. M.H. Esfahani, S. Zinatloo-Ajabshir, H. Naji, C.A. Marjerrison, J.E. Greedan, M. Behzad, Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE = Dy, Ho, and Yb) microstructures. Ceram. Int. 49, 253–263 (2023)

    Article  CAS  Google Scholar 

  25. C. Neusel, G.A. Schneider, Size-dependence of the dielectric breakdown strength from nano- to millimeter scale. J. Mech. Phys. Solids 63, 201–213 (2014)

    Article  Google Scholar 

  26. M.Y. Chu, L.C. Jonghe, M.K.F. Lin, F.J.T. Lin, Precoarsening to improve microstructure and sintering of powder compacts. J. Am. Ceram. Soc. 74, 2902–2911 (1991)

    Article  CAS  Google Scholar 

  27. U. Sutharsini, M. Thanihaichelvan, C.H. Ting, S. Ramesh, C.Y. Tan, H. Chandran, A.A.D. Sarhan, S. Ramesh, I. Urriés, Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceram. Int. 43, 7594–7599 (2017)

    Article  CAS  Google Scholar 

  28. P.R. Ren, D. Ren, L. Sun, F.X. Yan, S. Yang, G.Y. Zhao, Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3. J. Eur. Ceram. Soc. 40, 4495–4502 (2020)

    Article  CAS  Google Scholar 

  29. K. Han, N. Luo, Y. Jing, X. Wang, B. Peng, L. Liu, C. Hu, H. Zhou, Y. Wei, X. Chen, Q. Feng, Structure and energy storage performance of Ba-modified AgNbO3 lead-free antiferroelectric ceramics. Ceram. Int. 45, 5559–5565 (2019)

    Article  CAS  Google Scholar 

  30. K. Han, N. Luo, S. Mao, F. Zhuo, X. Chen, L. Liu, C. Hu, H. Zhou, X. Wang, Y. Wei, Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J. Materiomics 5, 597–605 (2019)

    Article  Google Scholar 

  31. S. Mao, N. Luo, K. Han, Q. Feng, X. Chen, B. Peng, L. Liu, C. Hu, H. Zhou, F. Toyohisa, Y. Wei, Effect of Lu doping on the structure, electrical properties and energy storage performance of AgNbO3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 31, 7731–7741 (2020)

    Article  CAS  Google Scholar 

  32. D. Feng, H. Du, H. Ran, T. Lu, S. Xia, L. Xu, Z. Wang, C. Ma, Antiferroelectric stability and energy storage properties of Co-doped AgNbO3 ceramics. J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2022.123081

    Article  Google Scholar 

  33. H.B. Chang, M.Y. Shang, C.Y. Zhang, H.M. Yuan, S.H. Feng, W.K. Wong-Ng, Hydrothermal syntheses and structural phase transitions of AgNbO3. J. Am. Ceram. Soc. 95, 3673–3677 (2012)

    Article  CAS  Google Scholar 

  34. J. Wang, X.H. Wan, Y. Rao, L. Zhao, K.J. Zhu, Hydrothermal synthesized AgNbO3 powders: leading to greatly improved electric breakdown strength in ceramics. J. Eur. Ceram. Soc. 40, 5589–5596 (2020)

    Article  CAS  Google Scholar 

  35. N.J. Lóh, L. Simão, C.A. Faller, A. De Noni, O.R.K. Montedo, A review of two-step sintering for ceramics. Ceram. Int. 42, 12556–12572 (2016)

    Article  Google Scholar 

  36. T. Li, W. Cao, P. Chen, J. Wang, C. Wang, Effects of sintering method on the structural, dielectric and energy storage properties of AgNbO3 lead-free antiferroelectric ceramics. J. Mater. Sci. 56, 13499–13508 (2021)

    Article  CAS  Google Scholar 

  37. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Effect of BiMO3 (M=Al, In, Y, Sm, Nd, and La) doping on the dielectric properties of BaTiO3 ceramics. Ceram. Int. 43, 9593–9599 (2017)

    Article  CAS  Google Scholar 

  38. T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, X. Wei, Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett. 137, 79–81 (2014)

    Article  CAS  Google Scholar 

  39. D. Zheng, R. Zuo, D. Zhang, Y. Li, X. Tan, Novel BiFeO3–BaTiO3–Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    Article  CAS  Google Scholar 

  40. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y. Wang, L. Guo, W. Tai, H. Wei, Lead-free BaTiO3-Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    Article  CAS  Google Scholar 

  41. D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 6, 4133–4144 (2018)

    Article  CAS  Google Scholar 

  42. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019)

    Article  CAS  Google Scholar 

  43. F. Li, T. Jiang, J. Zhai, B. Shen, H. Zeng, Exploring novel bismuth-based materials for energy storage applications. J. Mater. Chem. C 6, 7976–7981 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Scientific Research Project of Guangdong Provincial Education Department (2022KTSCX123) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020B1515120097 and 2020 A1515111107). The project is also funded by the Open Project Program of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University (No. EFMD2022015M) and Key Platform Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (No. 2019GCZX002 and 2020KCXTD011).

Author information

Authors and Affiliations

Authors

Contributions

Aining You: Conceptualization, Writing—Original draft preparation. Yanlin Chen: Investigation, Data Curation. Jieyu Fang: Investigation. Yang Ding: Data Curation. Ting Wang: Resources. Min Chen: Project administration, Resources. Xiucai Wang: Project administration, Funding acquisition.

Corresponding authors

Correspondence to Min Chen or Xiucai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, A., Chen, Y., Fang, J. et al. Enhanced energy storage performance of silver niobate-based antiferroelectric ceramics by two-step sintering mothed. J Mater Sci: Mater Electron 35, 649 (2024). https://doi.org/10.1007/s10854-024-12379-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12379-w

Navigation