Skip to main content
Log in

Resistive switching and Schottky barrier modulation at CoPt/ ferroelectric-like MgZnO interface for non-volatile memories

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferroelectric memristors have attracted much attention as a type of nonvolatile resistance switching memories in neuromorphic computing, image recognition, and information storage. Their resistance switching mechanisms have been studied several times in perovskite and complicated materials systems. It was interpreted as the modulation of carrier transport by polarization control over Schottky barriers. Here, we experimentally report the isothermal resistive switching across a CoPt/MgZnO Schottky barrier using a simple binary semiconductor. The crystal and texture properties showed high-quality and single-crystal Co0.30Pt0.70/Mg0.20Zn0.80O hetero-junctions. The resistive switching was examined by an electric-field cooling method that exhibited a ferroelectric Curie temperature of MgZnO close to the bulk value. The resistive switching across CoPt/MgZnO Schottky barrier was accompanied by a change in the Schottky barrier height of 26.5 meV due to an interfacial charge increase and/or orbital hybridization induced partial reversal of the MgZnO polarization. The magnitude of the reversed polarization was estimated to be a reasonable value of 3.0 (8.25) μC/cm2 at 300 K (2 K). These findings demonstrated the utilities of CoPt/MgZnO interface as a potential candidate for ferroelectric memristors and advanced spintronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Fan, J. Chen, J. Wang, Ferroelectric HfO2-based materials for next-generation ferroelectric memories. J. Adv. Dielect. 06(02), 1630003 (2016). https://doi.org/10.1142/S2010135X16300036

    Article  CAS  Google Scholar 

  2. C.A.F. Vaz, Y.J. Shin, M. Bibes, K.M. Rabe, F.J. Walker, C.H. Ahn, Epitaxial ferroelectric interfacial devices. Appl. Phys. Rev. 8(4), 041308 (2021). https://doi.org/10.1063/5.0060218

    Article  CAS  Google Scholar 

  3. H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Böttger, R. Waser, Current status and challenges of ferroelectric memory devices. Microelectron. Eng. 80, 296–304 (2005). https://doi.org/10.1016/j.mee.2005.04.084

    Article  CAS  Google Scholar 

  4. T.P. Ma, J.-P. Han, Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23(7), 386–388 (2002). https://doi.org/10.1109/LED.2002.1015207

    Article  CAS  Google Scholar 

  5. A. von Hippel, Piezoelectricity, ferroelectricity, and crystal structure. Z. Physik 133(1), 158–173 (1952). https://doi.org/10.1007/BF01948692

    Article  Google Scholar 

  6. H. D. Megaw, Ferroelectricity in Crystals, Methuen. (1957), OCLC Number: 590072055. https://search.worldcat.org/title/Ferroelectricity-in-crystals/oclc/590072055

  7. S. Fichtner, N. Wolff, F. Lofink, L. Kienle, B. Wagner, AlScN: A III-V semiconductor based ferroelectric. J. Appl. Phys. 125(11), 114103 (2019). https://doi.org/10.1063/1.5084945

    Article  CAS  Google Scholar 

  8. C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2(1), 1–14 (2018)

    Google Scholar 

  9. X. Xu, T. Zhong, N. Zuo, Z. Li, D. Li, L. Pi, P. Chen, M. Wu, T. Zhai, X. Zhou, High-TC two-dimensional ferroelectric CuCrS2 grown via chemical vapor deposition. ACS Nano 16(5), 8141–8149 (2022). https://doi.org/10.1021/acsnano.2c01470

    Article  CAS  PubMed  Google Scholar 

  10. L. Wang, X. Wang, Y. Zhang, R. Li, T. Ma, K. Leng, Z. Chen, I. Abdelwahab, K.P. Loh, Exploring ferroelectric switching in α-In2Se3 for neuromorphic computing. Adv. Func. Mater. 30(45), 2004609 (2020). https://doi.org/10.1002/adfm.202004609

    Article  CAS  Google Scholar 

  11. A.K. Saha, M. Si, P.D. Ye, S.K. Gupta, α-In2Se3 based ferroelectric-semiconductor metal junction for non-volatile memories. Appl. Phys. Lett. 117(18), 183504 (2020). https://doi.org/10.1063/5.0021395

    Article  CAS  Google Scholar 

  12. T. Zhang, M. Li, J. Chen, Y. Wang, L. Miao, Y. Lu, Y. He, Multi-component ZnO alloys: bandgap engineering, hetero-structures, and optoelectronic devices. Mater. Sci. Eng. R. Rep. 147, 100661 (2022). https://doi.org/10.1016/j.mser.2021.100661

    Article  Google Scholar 

  13. B. Meng, B. Hinkov, N.M.L. Biavan, H.T. Hoang, D. Lefebvre, M. Hugues, D. Stark, M. Franckié, A. Torres-Pardo, J. Tamayo-Arriola, M.M. Bajo, A. Hierro, G. Strasser, J. Faist, J.M. Chauveau, Terahertz intersubband electroluminescence from nonpolar M-plane ZnO quantum cascade structures. ACS Photonics 8(1), 343–349 (2021). https://doi.org/10.1021/acsphotonics.0c01641

    Article  CAS  Google Scholar 

  14. M. Belmoubarik, K. Ohtani, H. Ohno, Intersubband transitions in ZnO multiple quantum wells. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2926673

    Article  Google Scholar 

  15. L. Orphal, S. Kalusniak, O. Benson, S. Sadofev, Tunable intersubband transitions in ZnO/ZnMgO Multiple quantum wells in the mid infrared spectral range. AIP Adv. 7(11), 115309 (2017). https://doi.org/10.1063/1.4998805

    Article  CAS  Google Scholar 

  16. H. Teisseyre, D. Jarosz, L. Marona, A. Bojarska, V. Ivanov, P. Perlin, T. Czyszanowski, Homoepitaxial ZnO/ZnMgO laser structures and their properties. Phys. Status Solidi 218(1), 2000344 (2021)

    Article  CAS  Google Scholar 

  17. M. Belmoubarik, M. Al-Mahdawi, M. Obata, D. Yoshikawa, H. Sato, T. Nozaki, T. Oda, M. Sahashi, Tunneling electroresistance of MgZnO-based tunnel junctions. Appl. Phys. Lett. 109(17), 173507 (2016). https://doi.org/10.1063/1.4966180

    Article  CAS  Google Scholar 

  18. K. Ferri, S. Bachu, W. Zhu, M. Imperatore, J. Hayden, N. Alem, N. Giebink, S. Trolier-McKinstry, J.-P. Maria, Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130(4), 044101 (2021). https://doi.org/10.1063/5.0053755

    Article  CAS  Google Scholar 

  19. Z.C. Feng, Handbook of zinc oxide and related materials, vol. Two (CRC Press, Devices and Nano-Engineering, 2012)

    Book  Google Scholar 

  20. M. Belmoubarik, A. El Moutaouakil, Barrier thickness dependence of the built-in electric field in pseudomorphic ZnO/Zn0.55Mg0.45O multi-quantum wells. J. Alloys Compds. 941, 168960 (2023). https://doi.org/10.1016/j.jallcom.2023.168960

    Article  CAS  Google Scholar 

  21. A. Onodera, M. Takes, Electronic ferroelectricity in II-VI semiconductor ZnO, in advances in ferroelectrics. ed. by A. Peliz-Barranco (InTech, London, 2012)

    Google Scholar 

  22. T.S. Herng, A. Kumar, C.S. Ong, Y.P. Feng, Y.H. Lu, K.Y. Zeng, J. Ding, Investigation of the non-volatile resistance change in noncentrosymmetric compounds. Sci. Rep. (2012). https://doi.org/10.1038/srep00587

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Onodera, N. Tamaki, K. Yoshio, H. Satoh, T. Takama, H. Yamashita, Novel ferroelectricity in polar Semiconductor ZnO by Li-substitution. Proceed. Eleventh IEEE Int. Symp. Appl. Ferroelectr. (1998). https://doi.org/10.1109/ISAF.1998.786735

    Article  Google Scholar 

  24. P. Kumar, J.P. Singh, H.K. Malik, S. Gautam, K.H. Chae, K. Asokan, Structural, transport and ferroelectric properties of Zn1−xMgxO samples and their local electronic structure. Superlattices Microstruct. 78, 183–189 (2015). https://doi.org/10.1016/j.spmi.2014.11.033

    Article  CAS  Google Scholar 

  25. R. Joshi, P. Kumar, A. Gaur, K. Asokan, Structural, optical and ferroelectric properties of V doped ZnO. Appl. Nanosci. 4(5), 531–536 (2014). https://doi.org/10.1007/s13204-013-0231-z

    Article  CAS  Google Scholar 

  26. Y.C. Yang, C. Song, X.H. Wang, F. Zeng, F. Pan, Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−xCrxO films. J. Appl. Phys. 103(7), 074107 (2008). https://doi.org/10.1063/1.2903152

    Article  CAS  Google Scholar 

  27. H. Liu, Y. Wang, J. Wu, G. Zhang, Y. Yan, Oxygen Vacancy assisted multiferroic property of Cu doped ZnO films. Phys. Chem. Chem. Phys. 17(14), 9098–9105 (2015). https://doi.org/10.1039/C5CP00086F

    Article  CAS  PubMed  Google Scholar 

  28. J.W. Lee, N.G. Subramaniam, T.W. Kang, Y. Shon, E.K. Kim, Ferroelectric behavior and reproducible bi-stable resistance switching property in K-doped ZnO thin films as candidate for application in non-volatile memories. Solid State Commun. 209–210, 11–14 (2015). https://doi.org/10.1016/j.ssc.2015.02.019

    Article  CAS  Google Scholar 

  29. A.K. Tagantsev, Pseudoferroelectricity: a possible scenario for doped ZnO. Appl. Phys. Lett. 93(20), 202905 (2008). https://doi.org/10.1063/1.3036537

    Article  CAS  Google Scholar 

  30. J.W. Bennett, K.F. Garrity, K.M. Rabe, D. Vanderbilt, Hexagonal ABC semiconductors as ferroelectrics. Phys. Rev. Lett. 109(16), 167602 (2012). https://doi.org/10.1103/PhysRevLett.109.167602

    Article  CAS  PubMed  Google Scholar 

  31. H. Moriwake, R. Yokoi, A. Taguchi, T. Ogawa, C.A.J. Fisher, A. Kuwabara, Y. Sato, T. Shimizu, Y. Hamasaki, H. Takashima, M. Itoh, A computational search for Wurtzite-structured ferroelectrics with low coercive voltages. APL Mater. 8(12), 121102 (2020). https://doi.org/10.1063/5.0023626

    Article  CAS  Google Scholar 

  32. M. Itoh, Y. Hamasaki, H. Takashima, R. Yokoi, A. Taguchi, H. Moriwake, Chemical design of a new displacive-type ferroelectric. Dalton Trans. 51(7), 2610–2630 (2022). https://doi.org/10.1039/D1DT03693A

    Article  CAS  PubMed  Google Scholar 

  33. J. Huang, Y. Hu, S. Liu, Origin of ferroelectricity in magnesium-doped zinc oxide. Phys. Rev. B 106(14), 144106 (2022). https://doi.org/10.1103/PhysRevB.106.144106

    Article  CAS  Google Scholar 

  34. Y.N. Hendri, R. Kurniawan, K. Takase, Y. Darma, Origin of ferroelectricity in carbon-doped ZnO nanocolumnars: experimental and density-functional studies. Ceram. Int. 48(2), 2038–2044 (2022). https://doi.org/10.1016/j.ceramint.2021.09.289

    Article  CAS  Google Scholar 

  35. K.-H. Kim, I. Karpov, R.H. Olsson, D. Jariwala, Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18(5), 422–441 (2023). https://doi.org/10.1038/s41565-023-01361-y

    Article  CAS  PubMed  Google Scholar 

  36. L.-X. Zhao, J. Liu, Piezoelectricity in binary Wurtzite semiconductors: a first-principles study. Appl. Phys. Exp. 14(12), 121003 (2021)

    Article  CAS  Google Scholar 

  37. A. Singh, D. Kumar, P.K. Khanna, A. Kumar, M. Kumar, Dielectric anomaly in Mg doped ZnO thin film deposited by sol-gel method. J. Electrochem. Soc. 158(1), G9–G12 (2011). https://doi.org/10.1149/1.3511788

    Article  CAS  Google Scholar 

  38. H. Zhang, A. Alanthattil, R.F. Webster, D. Zhang, M.B. Ghasemian, R.B. Venkataramana, J. Seidel, P. Sharma, Robust switchable polarization and coupled electronic characteristics of magnesium-doped zinc oxide. ACS Nano 17(17), 17148–17157 (2023). https://doi.org/10.1021/acsnano.3c04937

    Article  CAS  PubMed  Google Scholar 

  39. Y. Lee, S. Lee, Large memory window and tenacious data retention in (0001) ZnO: Cr ferroelectric memristive device prepared on (111) Pt layer. J. Alloys Compds. 727, 304–310 (2017). https://doi.org/10.1016/j.jallcom.2017.08.138

    Article  CAS  Google Scholar 

  40. M.B. Ullah, K. Ding, T. Nakagawara, V. Avrutin, Ü. Özgür, H. Morkoç, Characterization of Ag Schottky barriers on heterostructures. Phys. Status Solidi (RRL)— Rapid Res. Lett. 12(2), 1700366 (2018)

    Article  Google Scholar 

  41. Y.K. Verma, V. Mishra, L. Agarwal, L. Singh, S.K. Gupta, Study of different transport properties of mgzno/zno and algan/gan high electron mobility transistors a review, in HEMT technology and applications. ed. by T.R. Lenka, H.P.T. Nguyen (Springer, Singapore, 2023)

    Google Scholar 

  42. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  CAS  Google Scholar 

  43. H. Chen, X. Sun, D. Yao, X. Xie, F.C.C. Ling, S. Su, Back-to-back asymmetric schottky-type self-powered UV photodetector based on ternary alloy MgZnO. J. Phys. D Appl. Phys. 52(50), 505112 (2019). https://doi.org/10.1088/1361-6463/ab452e

    Article  CAS  Google Scholar 

  44. C. Xie, X.-T. Lu, X.-W. Tong, Z.-X. Zhang, F.-X. Liang, L. Liang, L.-B. Luo, Y.-C. Wu, Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Func. Mater. 29(9), 1806006 (2019). https://doi.org/10.1002/adfm.201806006

    Article  CAS  Google Scholar 

  45. L.J. Brillson, Y. Lu, ZnO Schottky barriers and ohmic contacts. J. Appl. Phys. 109(12), 121301 (2011). https://doi.org/10.1063/1.3581173

    Article  CAS  Google Scholar 

  46. Q.A. Drmosh, I. Olanrewaju Alade, M. Qamar, S. Akbar, Zinc oxide-based acetone gas sensors for breath analysis: a review. Chem.—An Asian J. 16(12), 1519–1538 (2021)

    Article  CAS  Google Scholar 

  47. A.B. Djurišić, X. Chen, Y.H. Leung, A.M.C. Ng, ZnO Nanostructures: growth, properties and applications. J. Mater. Chem. 22(14), 6526–6535 (2012). https://doi.org/10.1039/C2JM15548F

    Article  Google Scholar 

  48. R.K. Pandey, J. Dutta, S. Brahma, B. Rao, C.-P. Liu, Review on ZnO-based piezotronics and piezoelectric nanogenerators: aspects of piezopotential and screening effect. J. Phys. Mater. 4(4), 044011 (2021). https://doi.org/10.1088/2515-7639/ac130a

    Article  CAS  Google Scholar 

  49. D. Pantel, S. Goetze, D. Hesse, M. Alexe, Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5(7), 6032–6038 (2011). https://doi.org/10.1021/nn2018528

    Article  CAS  PubMed  Google Scholar 

  50. M. Belmoubarik, M. Al-Mahdawi, H. Sato, T. Nozaki, M. Sahashi, Epitaxial Wurtzite-MgZnO barrier based magnetic tunnel junctions deposited on a metallic ferromagnetic electrode. Appl. Phys. Lett. 106(25), 252403 (2015). https://doi.org/10.1063/1.4923041

    Article  CAS  Google Scholar 

  51. G. Shukla, S. Sanvito, G. Lee, Fe- and co-based magnetic tunnel junctions with AlN and ZnO spacers. Phys. Rev. B 105(18), 184427 (2022). https://doi.org/10.1103/PhysRevB.105.184427

    Article  CAS  Google Scholar 

  52. M. Al-Mahdawi, M. Belmoubarik, M. Obata, D. Yoshikawa, H. Sato, T. Nozaki, T. Oda, M. Sahashi, Large nonvolatile control of interfacial magnetic anisotropy in CoPt by a ferroelectric ZnO-based tunneling barrier. Phys. Rev. B 100(5), 054423 (2019). https://doi.org/10.1103/PhysRevB.100.054423

    Article  CAS  Google Scholar 

  53. M. Belmoubarik, T. Nozaki, H. Endo, M. Sahashi, Investigation of ZnO thin films deposited on ferromagnetic metallic buffer layer by molecular beam epitaxy toward realization of ZnO-based magnetic tunneling junctions. J. Appl. Phys. 113(17), 17C106 (2013). https://doi.org/10.1063/1.4794875

    Article  CAS  Google Scholar 

  54. M. Erkovan, E. Şentürk, Y. Şahin, M. Okutan, I-V Characteristics of PtxCo1−x (x = 0.2, 0.5, and 0.7) thin films. J. Nanomater. (2013). https://doi.org/10.1155/2013/579131

    Article  Google Scholar 

  55. A.V. Zdoroveyshchev, M.V. Dorokhin, P.B. Demina, A.V. Kudrin, O.V. Vikhrova, M.V. Ved’, Yu.A. Danilov, I.V. Erofeeva, R.N. Krjukov, D.E. Nikolichev, CoPt ferromagnetic injector in light-emitting Schottky diodes based on InGaAs/GaAs nanostructures. Semiconductors 49(12), 1601–1604 (2015). https://doi.org/10.1134/S106378261512026X

    Article  CAS  Google Scholar 

  56. L. Jacques, G. Ryu, D. Goodling, S. Bachu, R. Taheri, P. Yousefian, S. Shetty, B. Akkopru-Akgun, C. Randall, N. Alem, J.-P. Maria, S. Trolier-McKinstry, Wake up and retention in zinc magnesium oxide ferroelectric films. J. Appl. Phys. 133(22), 224102 (2023). https://doi.org/10.1063/5.0153750

    Article  CAS  Google Scholar 

  57. H. Moriwake, A. Konishi, T. Ogawa, K. Fujimura, C.A.J. Fisher, A. Kuwabara, T. Shimizu, S. Yasui, M. Itoh, Ferroelectricity in wurtzite structure simple chalcogenide. Appl. Phys. Lett. 104(24), 242909 (2014). https://doi.org/10.1063/1.4884596

    Article  CAS  Google Scholar 

  58. Y. Kozuka, A. Tsukazaki, M. Kawasaki, Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl. Phys. Rev. 1(1), 011303 (2014). https://doi.org/10.1063/1.4853535

    Article  CAS  Google Scholar 

  59. J.P. Velev, J.D. Burton, M.Y. Zhuravlev, E.Y. Tsymbal, Predictive modelling of ferroelectric tunnel junctions. npj Comput. Mater. 2(1), 1–13 (2016)

    Article  Google Scholar 

  60. D. Zhao, T. Lenz, G.H. Gelinck, P. Groen, D. Damjanovic, D.M. de Leeuw, I. Katsouras, Depolarization of multidomain ferroelectric materials. Nat. Commun. 10(1), 2547 (2019). https://doi.org/10.1038/s41467-019-10530-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. C. Rossel, G.I. Meijer, D. Brémaud, D. Widmer, Electrical current distribution across a metal–insulator–metal structure during bistable switching. J. Appl. Phys. 90(6), 2892–2898 (2001). https://doi.org/10.1063/1.1389522

    Article  CAS  Google Scholar 

  62. H. Jiang, L. Han, P. Lin, Z. Wang, M.H. Jang, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, Q. Xia, Sub-10 Nm Ta channel responsible for superior performance of a HfO2 memristor. Sci. Rep. 6(1), 28525 (2016). https://doi.org/10.1038/srep28525

    Article  PubMed  PubMed Central  Google Scholar 

  63. F.A. Chudnovskii, L.L. Odynets, A.L. Pergament, G.B. Stefanovich, Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chem. 122(1), 95–99 (1996). https://doi.org/10.1006/jssc.1996.0087

    Article  CAS  Google Scholar 

  64. G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, F. Pan, Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 24(26), 3515–3520 (2012). https://doi.org/10.1002/adma.201201595

    Article  CAS  PubMed  Google Scholar 

  65. L. Shi, D. Shang, J. Sun, B. Shen, Bipolar resistance switching in fully transparent ZnO:Mg-based devices. Appl. Phys. Express 2(10), 101602 (2009). https://doi.org/10.1143/APEX.2.101602

    Article  CAS  Google Scholar 

  66. N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, B. Yu, Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories. Appl. Phys. Lett. 92(23), 232112 (2008). https://doi.org/10.1063/1.2945278

    Article  CAS  Google Scholar 

  67. L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang, H. Wang, C. Liu, J. He, High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater. 34(9), 2108313 (2022). https://doi.org/10.1002/adma.202108313

    Article  CAS  Google Scholar 

  68. E.Y. Tsymbal, K.D. Belashchenko, J.P. Velev, S.S. Jaswal, M. van Schilfgaarde, I.I. Oleynik, D.A. Stewart, Interface effects in spin-dependent tunneling. Prog. Mater. Sci. 52(2–3), 401–420 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.009

    Article  CAS  Google Scholar 

  69. Z. Yang, Q. Zhan, X. Zhu, Y. Liu, H. Yang, B. Hu, J. Shang, L. Pan, B. Chen, R.-W. Li, Tunneling magnetoresistance induced by controllable formation of Co filaments in resistive switching Co/ZnO/Fe structures. EPL 108(5), 58004 (2014). https://doi.org/10.1209/0295-5075/108/58004

    Article  CAS  Google Scholar 

  70. X. Li, J. Jia, Y. Li, Y. Bai, J. Li, Y. Shi, L. Wang, X. Xu, Realization of resistive switching and magnetoresistance in ZnO/ZnO-Co composite materials. Sci. Rep. 6(1), 31934 (2016). https://doi.org/10.1038/srep31934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. K. Sun, H.-Y. Su, W.-X. Li, Stability of polar ZnO surfaces studied by pair potential method and local energy density method. Theor. Chem. Acc. 133(1), 1427 (2013). https://doi.org/10.1007/s00214-013-1427-8

    Article  CAS  Google Scholar 

  72. A. Chen, W. Zhang, L.R. Dedon, D. Chen, F. Khatkhatay, J.L. MacManus-Driscoll, H. Wang, D. Yarotski, J. Chen, X. Gao, L.W. Martin, A. Roelofs, Q. Jia, Couplings of polarization with interfacial deep trap and Schottky interface controlled ferroelectric memristive switching. Adv. Func. Mater. 30(43), 2000664 (2020). https://doi.org/10.1002/adfm.202000664

    Article  CAS  Google Scholar 

  73. F. Xue, X. He, Y. Ma, D. Zheng, C. Zhang, L.-J. Li, J.-H. He, B. Yu, X. Zhang, Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nat. Commun. 12(1), 7291 (2021). https://doi.org/10.1038/s41467-021-27617-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. J.-X. Wang, M.-F. Liu, Z.-B. Yan, J.-M. Liu, Critical exponents of ferroelectric transitions in modulated SrTiO3: consequences of quantum fluctuations and quenched disorder. Chin. Phys. B 22(7), 077701 (2013). https://doi.org/10.1088/1674-1056/22/7/077701

    Article  CAS  Google Scholar 

  75. S.G. Bahoosh, A.T. Apostolov, I.N. Apostolova, S. Trimper, J.M. Wesselinowa, Theoretical study of the multiferroic properties in M-Doped (M=Co, Cr, Mg) ZnO thin films. J. Magn. Magn. Mater. 373, 40–47 (2015). https://doi.org/10.1016/j.jmmm.2014.02.011

    Article  CAS  Google Scholar 

  76. H. Elhadidy, J. Sikula, J. Franc, Symmetrical current-voltage characteristic of a metal–semiconductor–metal structure of schottky contacts and parameter retrieval of a CdTe structure. Semicond. Sci. Technol. 27(1), 015006 (2011). https://doi.org/10.1088/0268-1242/27/1/015006

    Article  CAS  Google Scholar 

  77. S. Averine, Y.C. Chan, Y.L. Lam, Evaluation of Schottky contact parameters in metal–semiconductor–metal photodiode structures. Appl. Phys. Lett. 77(2), 274–276 (2000). https://doi.org/10.1063/1.126948

    Article  CAS  Google Scholar 

  78. L.J. Brillson, Chapter four - surfaces and interfaces of zinc oxide, in Oxide Semiconductors. ed. by B.G. Svensson, S.J. Pearton, C. Jagadish (Elsevier, Amsterdam, 2013)

    Google Scholar 

  79. J. Chen, Z. Zhang, Y. Guo, J. Robertson, Schottky barrier heights of defect-free metal/ZnO, CdO, MgO, and SrO interfaces. J. Appl. Phys. 129(17), 175304 (2021). https://doi.org/10.1063/5.0047447

    Article  CAS  Google Scholar 

  80. V.S. Rana, J.K. Rajput, T.K. Pathak, L.P. Purohit, Cu Sputtered Cu/ZnO Schottky diodes on fluorine doped tin oxide substrate for optoelectronic applications. Thin Solid Films 679, 79–85 (2019). https://doi.org/10.1016/j.tsf.2019.04.019

    Article  CAS  Google Scholar 

  81. K.O. Zheng, N. Rosli, M.M. Mohd Rashid, M.M. Halim, Influence of copper contact thickness on Cu/ZnO nanorods-enhanced Schottky diode. Physica B 648, 414425 (2023). https://doi.org/10.1016/j.physb.2022.414425

    Article  CAS  Google Scholar 

  82. M.K. Niranjan, C.-G. Duan, S.S. Jaswal, E.Y. Tsymbal, Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96(22), 222504 (2010). https://doi.org/10.1063/1.3443658

    Article  CAS  Google Scholar 

  83. D. Yoshikawa, M. Obata, Y. Taguchi, S. Haraguchi, T. Oda, Possible origin of nonlinear magnetic anisotropy variation in electric field effect in a double interface system. Appl. Phys. Exp. 7(11), 113005 (2014). https://doi.org/10.7567/APEX.7.113005

    Article  CAS  Google Scholar 

  84. B. Dieny, Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. (2017). https://doi.org/10.1103/RevModPhys.89.025008

    Article  Google Scholar 

  85. N.R. D’Amico, G. Cantele, C.A. Perroni, D. Ninno, Electronic properties and Schottky barriers at ZnO–metal interfaces from first principles. J. Phys. Condens. Matter 27(1), 015006 (2014). https://doi.org/10.1088/0953-8984/27/1/015006

    Article  CAS  PubMed  Google Scholar 

  86. I. Pintilie, C.M. Teodorescu, C. Ghica, C. Chirila, A.G. Boni, L. Hrib, I. Pasuk, R. Negrea, N. Apostol, L. Pintilie, Polarization-control of the potential barrier at the electrode interfaces in epitaxial ferroelectric thin films. ACS Appl. Mater. Interfaces 6(4), 2929–2939 (2014). https://doi.org/10.1021/am405508k

    Article  CAS  PubMed  Google Scholar 

  87. M. Si, Z. Zhang, S.-C. Chang, N. Haratipour, D. Zheng, J. Li, U.E. Avci, P.D. Ye, Asymmetric metal/α-In2Se3/Si crossbar ferroelectric semiconductor junction. ACS Nano 15(3), 5689–5695 (2021). https://doi.org/10.1021/acsnano.1c00968

    Article  CAS  PubMed  Google Scholar 

  88. M. Shen, A. Afshar, Y.Y. Tsui, K.C. Cadien, D.W. Barlage, Performance of nanocrystal ZnO thin-film Schottky contacts on cu by atomic layer deposition. IEEE Trans. Nanotechnol. 16(1), 135–139 (2017). https://doi.org/10.1109/TNANO.2016.2638447

    Article  CAS  Google Scholar 

  89. D. Pantel, M. Alexe, Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B 82(13), 134105 (2010). https://doi.org/10.1103/PhysRevB.82.134105

    Article  CAS  Google Scholar 

  90. P. Kumar, Y. Kumar, H.K. Malik, S. Annapoorni, S. Gautam, K.H. Chae, K. Asokan, Possibility of room-temperature multiferroism in Mg-doped ZnO. Appl. Phys. A 114(2), 453–457 (2014). https://doi.org/10.1007/s00339-013-7664-9

    Article  CAS  Google Scholar 

  91. S.-H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. J. Appl. Phys. 112(7), 073503 (2012). https://doi.org/10.1063/1.4757023

    Article  CAS  Google Scholar 

Download references

Funding

Japan Society for the Promotion of Science, Grant no. 25-5806, Mohamed Belmoubarik.

Author information

Authors and Affiliations

Authors

Contributions

MB: conceptualization, methodology, investigation, formal analysis, funding acquisition, writing—original draft and writing—review & editing. MAM: conceptualization, methodology, investigation and data curation. GMJr: formal analysis, data curation and writing—original draft. TN: methodology, formal analysis and investigation. SM: methodology and funding acquisition. CC and WKP: contributed to the formal analysis, and writing—review & editing.

Corresponding author

Correspondence to Mohamed Belmoubarik.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 371 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmoubarik, M., Al-Mahdawi, M., Machado, G. et al. Resistive switching and Schottky barrier modulation at CoPt/ ferroelectric-like MgZnO interface for non-volatile memories. J Mater Sci: Mater Electron 35, 460 (2024). https://doi.org/10.1007/s10854-024-12195-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12195-2

Navigation