Skip to main content
Log in

Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)2 were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl3 electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)2 material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10−16 cm2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Research data is original and it made available on request.

References

  1. R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloys Comp. (2018). https://doi.org/10.1016/j.jallcom.2017.10.262

    Article  Google Scholar 

  2. R.K. Sharma, H.S. Oh, Y.G. Shul, H. kim, J. Power Sources 173, 1024 (2007). https://doi.org/10.1016/J.JPOWSOUR.2007.08.076

    Article  CAS  Google Scholar 

  3. J.S. Shaikh, R.C. Pawar, R.S. Devan, Y.R. Ma, P.P. Salvi, S.S. Kolekar, P.S. Patil, Electrochimica Acta 56, 2127 (2011). https://doi.org/10.1016/J.ELECTACTA.2010.11.046

    Article  CAS  Google Scholar 

  4. S. Chuhadiya, D. Himanshu, S.L. Suthar, M.S. Patel, Coord. Chem. Rev. 446, 214115 (2021). https://doi.org/10.1016/j.ccr.2021.214115

    Article  CAS  Google Scholar 

  5. T.S. Ghadge, A.L. Jadhav, B.J. Lokhande, J. Alloys Comp. (2020). https://doi.org/10.1016/j.jallcom.2020.153860

    Article  Google Scholar 

  6. S.V. Khavale, R.C. Ambare, B.J. Lokhande, J. Mater. Sci. Mater. Electron. 31, 7315 (2020). https://doi.org/10.1007/s10854-019-02420-8

    Article  CAS  Google Scholar 

  7. T. Li, H. Yu, L. Zhi, W. Zhang, L. Dang, Z. Liu, Z. Lei, J. Phys. Chem. C 121(35), 18982 (2017). https://doi.org/10.1021/acs.jpcc.7b04330

    Article  CAS  Google Scholar 

  8. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Curr. Appl. Phys. 11(14), 1582 (2014). https://doi.org/10.1016/j.cap.2014.08.001

    Article  Google Scholar 

  9. B.Y. Fugare, B.J. Lokhande, Mater. Sci. Semicond. Process. 71, 121 (2017). https://doi.org/10.1016/j.mssp.2017.07.016

    Article  CAS  Google Scholar 

  10. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Measurement. 88, 66 (2016). https://doi.org/10.1016/j.measurement.2016.02.063

    Article  Google Scholar 

  11. M. Huang, F. Li, F. Dong, Y.X. Zhang, L. Zhang, J. Mater. Chem. A 3, 21380 (2015). https://doi.org/10.1039/C5TA05523G

    Article  CAS  Google Scholar 

  12. T.S. Ghadge, A.L. Jadhav, Y.M. Uplane, A.V. Thakur, S.V. Kamble, B.J. Lokhande, J. Mater. Sci. Mater. Electron. 32(7), 9018 (2021). https://doi.org/10.1007/s10854-021-05572-8

    Article  CAS  Google Scholar 

  13. R.C. Ambare, P.S. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Appl. Surf. Sci. 453, 214 (2018). https://doi.org/10.1016/J.APSUSC.2018.05.090

    Article  CAS  Google Scholar 

  14. A.V. Kadam, S.B. Patil, Mater. Res. Express 5(8), 085036 (2018). https://doi.org/10.1088/2053-1591/aad406

    Article  CAS  Google Scholar 

  15. S.V. Kambale, A.L. Jadhav, R.M. Kore, A.V. Thakur, Macromol. Symp.  (2019). https://doi.org/10.1002/masy.201800213

    Article  Google Scholar 

  16. S. Sonia, S. Poongodi, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Mater. Sci. Semicond. Process 30, 585 (2015). https://doi.org/10.1016/j.mssp.2014.10.012

    Article  CAS  Google Scholar 

  17. A.V. Kadam, J. Appl. Electrochem. 47, 335 (2017). https://doi.org/10.1007/s10800-016-1011-8

    Article  CAS  Google Scholar 

  18. J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Appl. Surf. Sci. 418, 380 (2016). https://doi.org/10.1016/j.apsusc.2016.12.139

    Article  CAS  Google Scholar 

  19. O. Gençyılmaz, T. Taşköprü, J. Alloys Compd. 695, 1205 (2017). https://doi.org/10.1016/j.jallcom.2016.10.247

    Article  CAS  Google Scholar 

  20. B. Vidyadharan, I. Misnon, J. Ismail, M.M. Yusoff, R. Jose, J. Alloys Compd. 633, 22 (2015). https://doi.org/10.1016/j.jallcom.2015.01.278

    Article  CAS  Google Scholar 

  21. P. Revathi, V. Manikandan, P. Ezhilmathi, V.U. Shankar, P. Suganya, K. Krishnasamy, Asi J. Chem. 32(11), 2763 (2020). https://doi.org/10.14233/ajchem.2020.22845

    Article  CAS  Google Scholar 

  22. M.R. Pallavolu, A.N. Banergee, S.W. Joo, Coatings. 13, 1337 (2023). https://doi.org/10.3390/coatings13081337

    Article  CAS  Google Scholar 

  23. R.N. Bulakhe, V.Q. Nguyen, D. Tuma, Y.R. Lee, H. Zhang, S. Zhang, J.-J. Shim, J. Ind. Eng. Chem. 66, 288 (2018). https://doi.org/10.1016/j.jiec.2018.05.043

    Article  CAS  Google Scholar 

  24. S.K. Shinde, D.P. Dubal, B.S. Ghodake, Y. Kimc, V.J. Fulari, J. Electroanal. Chem. 732, 80 (2014). https://doi.org/10.1016/j.jelechem.2014.09.004

    Article  CAS  Google Scholar 

  25. F. Basile, G. Fornasari, M. Gazzano, A. Vaccari, Appl. Clay Sci. 16, 185 (2000). https://doi.org/10.1016/S0169-1317(99)00053-8

    Article  CAS  Google Scholar 

  26. T. Liu, K. Wang, Y. Chen, S. Zhao, Y. Han, Green Energy Environ. 4(2), 171 (2019). https://doi.org/10.1016/j.gee.2019.01.010

    Article  Google Scholar 

  27. I. Misumi, K. Naoi, K. Sugawara, S. Gonda, Measurement. 73, 295 (2015). https://doi.org/10.1016/j.measurement.2015.05.026

    Article  Google Scholar 

  28. Y. Dessie, S. Tadesse, R. Eswaramoorthy, J. Nanomater. (2021). https://doi.org/10.1155/2021/7475902

    Article  Google Scholar 

  29. S.K. Kim, I.J. Park, D.Y. Lee, J.G. Kim, J. Appl. Electrochem. 43, 507 (2013). https://doi.org/10.1007/s10800-013-0534-5

    Article  CAS  Google Scholar 

  30. Q. Chen, X. Li, X. Zang, Y. Cao, Y. He, P. Li, K. Wang, J. Wei, D. Wu, H. Zhu, RSC Adv. 4, 36253 (2014). https://doi.org/10.1039/C4RA05553E

    Article  CAS  Google Scholar 

  31. T.S. Ghadge, B.J. Lokhande, J. Mater. Sci. 51(21), 9879 (2016). https://doi.org/10.1007/s10853-016-0221-0

    Article  CAS  Google Scholar 

  32. J.E. Baur, S. Wang, M.C. Brandt, Anal. Chem. 68(21), 3815 (1996). https://doi.org/10.1021/ac960603m

    Article  CAS  Google Scholar 

Download references

Funding

Authors are grateful to thank Bhabha Atomic Research Centre (BARC), Mumbai, for their monetary endorsement of the venture Policy 2010/34/46/BRNS/2228 and Department of Science and Technology, New Delhi for providing financial supports through the project scheme DST-SERB sanction no.SB/EMEQ-331/2013.

Author information

Authors and Affiliations

Authors

Contributions

TSG: Conceptualization, Investigation, Methodology, Writing—review & editing. SVK: Investigation, Formal analysis, Writing—review & editing. BYF: Writing—original draft, Writing—review & editing. RCA: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, BJL: Funding acquisition, Investigation, Supervision, Writing—original draft, review & editing.

Corresponding authors

Correspondence to R. C. Ambare or B. J. Lokhande.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Indicate that our research manuscript has been conducted ethically, keeping in mind privacy, consent and appropriate reporting of those involved in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadage, T.S., Kambale, S.V., Fugare, B.Y. et al. Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application. J Mater Sci: Mater Electron 34, 2309 (2023). https://doi.org/10.1007/s10854-023-11708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11708-9

Navigation