Skip to main content

Advertisement

Log in

Radio telemetry helps record the dispersal patterns of birdwing butterflies in mountainous habitats: Golden Birdwing (Troides aeacus) as an example

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Birdwing butterflies are a monophyletic group of swallowtail butterflies (Papilionidae) protected by national and international laws and often serve as flagships of insect conservation. Selecting the Golden Birdwing (Troides aeacus) as an example, we demonstrate an effective way to simultaneously record the activity of multiple birdwing butterflies using radio telemetry in hard-to-access mountainous terrain. During the summer flight period of T. aeacus (June and July), a single researcher was able to obtain 30-min records of movement patterns for ten individuals for an average of 4 days by fastening 0.22 g transmitters onto the butterflies, in the mountainous valleys of Mt. Gongga, China. The maximum distance the butterflies traveled over the 4 day period was 4314 m away from the starting location. During this time, the average dispersal rate was 38.07 m/h (n = 9, sd = 85.11); average movement speed was 293.48 m/h (n = 9, sd = 121.45). Flight patterns of butterflies collected from low and high elevation habitats showed no significant differences. Activity levels of individuals from both low and high elevation habitats track diurnal fluctuation in temperature. Flight activity is positively correlated with temperature and negatively correlated with humidity. Our data provide basic parameters of real-time flight activity and dispersal ability for a species of conservation importance. The methodology is highly suitable for monitoring endangered lepidopteran species in otherwise difficult-to-access terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beirão MV, Campos-Neto FC, Pimenta IA, Freitas AVL (2012) Population biology and natural history of Parides burchellanus (Papilionidae: Papilioninae: Troidini), an endangered Brazilian Butterfly. Ann Entomol Soc Am 105:36–43

    Article  Google Scholar 

  • Boufford DE (2004) South-Central China. In: Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, da Fonseca GAB (eds) Hotspots revisited, 1st edn. Mexico City, CEMEX, pp 338–351

    Google Scholar 

  • Boufford DE, Van Dyck PP (1999) Mountains of Southwest China. In: Mittermeier RA, Myers N, Mittermeier CG (eds) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. CEMEX, Mexico City, pp 338–351

    Google Scholar 

  • Brown LM, Crone EE (2016) Minimum area requirements for an at-risk butterfly based on movement and demography. Conserv Biol 30:103–112

    Article  PubMed  Google Scholar 

  • Chambers JM (1992) Linear models. Chapter 4. In: Chambers SJM, Hastie TJ (eds) Statistical models. Pacific Grove, S. Wadsworth & Brooks/Cole

    Google Scholar 

  • Cheng G, Lu X, Wang X, Sun J (2018) Rebirth after death: forest succession dynamics in response to climate change on Gongga Mountain, Southwest China. J Mt Sci 15(8):1671–1681

    Article  Google Scholar 

  • Condamine FL, Toussaint EFA, Clamens AL, Genson G, Sperling FAH, Kergoat GJ (2015) Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Sci Rep 5:11860

    Article  PubMed  PubMed Central  Google Scholar 

  • Condamine FL, Nabholz B, Clamens AL, Dupuis JR, Sperling FAH (2018) Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating. Syst Entomol 43:460–480

    Article  Google Scholar 

  • Crall JD, Kocher S, Oppenheimer RL, Gravish N, Mountcastle AM, Pierce NE, Combes SA (2018) Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat Commun 9:1201. https://doi.org/10.1038/s41467-018-03561-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Abrera B (1975) Birdwing Butterflies of the World. Country Life Books, London

    Google Scholar 

  • Da Fonseca GAB (2003) Conservation science and NGOs. Conserv Biol 17:345–347

    Article  Google Scholar 

  • Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford

    Book  Google Scholar 

  • Fattorini L, Pisani C, Riga F, Zaccaroni M (2017) The R package ‘phuassess’ for assessing habitat selection using permutation-based combination of sign tests. Mamm Biol 83:64–70

    Article  Google Scholar 

  • Fornoff F, Dechmann D, Wikelski M (2012) Observation of movement and activity via radio-telemetry reveals diurnal behavior of the neotropical katydid philophyllia ingens (Orthoptera: Tettigoniidae). Ecotropica 18: 27–34

    Google Scholar 

  • Hagen M, Wikelski M, Kissling WD (2011) Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6(5):e19997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Kurt H, van de Wiel MA, Zeileis A (2006) A Lego system for conditional inference. Am Stat 60(3):257–263

    Article  Google Scholar 

  • Irving E, Hebda R (1993) Concerning the origin and distribution of Rhododendrons. J Am Rhododendr Soc 47:139–162

    Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org. Accessed 5 Sept 2017

  • Kays R, Tilak S, Crofoot M, Fountain T, Obando D, Ortega A, Kuemmeth F, Mandel J, Swenson G, Lambert T, Hirsch B, Wikelski M (2011) Tracking animal location and activity with an automated radio telemetry system in a tropical rainforest. Comput J 54:1931–1948

    Article  Google Scholar 

  • Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348(6240):aaa2478

    Article  CAS  PubMed  Google Scholar 

  • Kissling WD, Pattemore DE, Hagen M (2014) Challenges and prospects in the telemetry of insects. Biol Rev 89:511–530

    Article  Google Scholar 

  • Levett S, Walls S (2011) Tracking the elusive life of the Emperor Dragonfly Anax imperator Leach. J Br Dragonfly Soc 27:59–68

    Google Scholar 

  • Li X, Luo Y, Zhang Y, Schweiger O, Settele J, Yang Q (2010) On the conservation biology of a Chinese population of the birdwing Troides aeacus (Lepidoptera: Papilionidae). J Insect Conserv 14:257–268

    Article  Google Scholar 

  • Li X, Zhang Y, Settele J, Franzén M, Schweiger O (2013) Long-distance dispersal and habitat use of the butterfly Byasa impediens in a fragmented subtropical forest. Insect Conserv Divers 6:170–178

    Article  Google Scholar 

  • Li X, Luo Y, Yang H, Yang Q, Settele J, Schweiger O (2016) On the ecology and conservation of Sericinus montelus (Lepidoptera: Papilionidae)—its threats in xiaolongshan forests area (China). PLoS ONE 11:1–18

    Google Scholar 

  • Liégeois M, Tixier P, Beaudoin-Ollivier L (2016) Use of radio telemetry for studying flight movements of Paysandisia archon (Lepidoptera: Castniidae). J Insect Behav 29:199–213

    Article  Google Scholar 

  • Matsuka H (2001) Natural history of birdwing butterflies. Matsuka Printing Co., Tokyo

    Google Scholar 

  • Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Niitepõld K, Smith AD, Osborne JL, Reynolds DR, Carreck NL, Martin AP, Marden JH, Ovaskainen O, Hanski I (2009) Flight metabolic rate and Pgi genotype influence butterfly dispersal rate in the field. Ecology 90:2223–2232

    Article  PubMed  Google Scholar 

  • Parsons M (1998) The butterflies of Papua New Guinea: their systematics and biology. Academic Press, Cambridge, MA

    Google Scholar 

  • Pearson K (1895) Notes on regression and inheritance in the case of two parents. Proc R Soc London 58:240–242

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Roland J, Keyghobadi N, Fownes S (2000) Alpine Parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642–1653

    Article  Google Scholar 

  • Sands DPA (2008) Conserving the Richmond Birdwing Butterfly over two decades: where to next? Ecol Manag Restor 9(1):4–16

    Article  Google Scholar 

  • Sands DPA, New TR (2013) Conservation of the Richmond Birdwing butterfly in Australia. Springer, New York City

    Book  Google Scholar 

  • Schneider CW, Tautz J, Grunewald B, Fuchs S (2012) RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7:e30023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz CB, Crone EE (2001) Edge-mediated dispersal behavior in a prairie butterfly. Ecology 82:1879–1892

    Article  Google Scholar 

  • Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184

    Article  PubMed  Google Scholar 

  • Srygley RB, Kingsolver JG (2000) Effects of weight loading on flight performance and survival of palatable Neotropical Anartia fatima butterflies. Biol J Lin Soc 70:707–725

    Article  Google Scholar 

  • Svensson GP, Sahlin U, Brage B, Larsson MC (2011) Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry a case study on the threatened hermit beetle Osmoderma eremita. Biodivers Conserv 20:2883–2902

    Article  Google Scholar 

  • Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, van Moorter B, Alberts SC et al (2018) Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359:466–469

    Article  CAS  PubMed  Google Scholar 

  • Turchin P, Thoeny WT (1993) Quantifying dispersal of Southern Pine Beetles with mark-recapture experiments and a diffusion model. Ecol Appl 3:187–198

    Article  PubMed  Google Scholar 

  • Ulrich Y, Saragosti J, Tokita K, Tarnita CE, Kronauer DJC (2018) Fitness benefits and emergent division of labour at the onset of group living. Nature 560:635–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasanek P, Sam L, Novotny V (2013) Dispersal of butterflies in a New Guinea rainforest: using mark-recapture methods in a large, homogeneous habitat. Ecol Entomol 38:560–569

    Article  Google Scholar 

  • Wallace AR (1869) The Malay Archipelago: The land of the orang-utan, and the bird of paradise. A narrative of travel, with studies of man and nature. Macmillan and Co., London

    Google Scholar 

  • Wang J, Pan B, Zhang G, Cui H, Cao B, Geng H (2013) Late Quaternary glacial chronology on the eastern slope of Gongga Mountain, eastern Tibetan Plateau, China. Sci China Earth Sci 56:354–365

    Article  Google Scholar 

  • Wastlund J (2010) Summing inverse squares by euclidean geometry. http://www.math.chalmers.se/~wastlund/Cosmic.pdf. Accessed 30 Mar 2018

  • Wilts BD, Matsushita A, Arikawa K, Stavenga DG (2015) Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales. J R Soc Interface 12:20150717

    Article  PubMed  PubMed Central  Google Scholar 

  • Yale Center for Environmental Law & Policy [YCELP] (2018) 2018 Environmental Performance Index. https://epi.envirocenter.yale.edu/2018-epi-report/introduction. Accessed 30 Mar 2018

  • Zalucki MP, Kitching RL, Abel D, Pearson J (1980) A novel device for tracking butterflies in the field. Ann Entomol Soc Am 73(3):262–265

    Article  Google Scholar 

Download references

Acknowledgements

ZW was supported by a graduate fellowship from Harvard University Department of Organismic and Evolutionary Biology, as well as a Dewind Award in Lepidoptera conservation from the Xerces Society (2017), an Exploration Fund Grant (2016) from the Explorers Club and a Rufford Small Grant (2016) from the Rufford Foundation. We thank Huailiang Tang and Zulian Zhou for field assistance; Kadeem Gilbert for providing advice on an early version of the manuscript; Chris Baker and Wei-ping Chen for helpful discussions on modeling; Tom Garin and John R. Edwards for helpful discussion and instruction regarding choosing the proper radio telemetry system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

No T. aeacus was harmed during transmitter attachment. All T. aeacus collected for the experiment were released.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 62 kb)

Supplementary material 2 (PDF 3161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, Y. & Pierce, N.E. Radio telemetry helps record the dispersal patterns of birdwing butterflies in mountainous habitats: Golden Birdwing (Troides aeacus) as an example. J Insect Conserv 23, 729–738 (2019). https://doi.org/10.1007/s10841-019-00167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-019-00167-5

Keywords

Navigation