Skip to main content
Log in

Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Development of transgenic strains of microalgae is necessary to obtain microalgal strains that are capable of producing high levels of oils and a variety of bio-products. However, microalgae have a much lower transformation efficiency in comparison to other micro-organisms due to the presence of thick cell walls. Here, a two-pronged approach for optimizing the electroporation parameters combined with the application of secondary metabolites from myxobacteria to weaken the cell wall was used to maximize the transformation efficiency of Nannochloropsis salina (Eustigmatophyceae). When the electroporation parameters were set at 50 pulses of square waves at a field strength of 12,000 V cm−1, a transformation efficiency of up to 53 per 108 cells was achieved for N. salina in the early exponential phase of growth. Next, cultivation of the microalgae using bacterial conditioned F2N medium containing 10% supernatant of the myxobacteria strain DZ2 resulted in a moderate inhibition of the growth rate and distinctive morphological changes. Flow cytometry confirmed an increase in the overall cell size as well as granularity. When the bacterial medium conditioned cells were employed for transformation under optimized electroporation conditions, the transformation efficiency improved 2.71-fold up to 144 per 108 cells. Taken together, a combinatory approach for electroporation using high field strength square wave pulses and conditioning cells with myxobacterial supernatant is a promising method for the efficient genetic transformation of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anandarajah K, Mahendraperumal G, Sommerfeld M, Hu Q (2012) Characterization of microalga Nannochloropsis sp mutants for improved production of biofuels. Appl Energ 96:371–377

    Article  CAS  Google Scholar 

  • Berrios H, Zapata M, Rivas M (2016) A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment. J Appl Phycol 28:201–208

    Article  CAS  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  CAS  PubMed  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci 7:505

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans AG, Davey HM, Cookson A, Currinn H, Cooke-Fox G, Stanczyk PJ, Whitworth DE (2012) Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo. Microbiology 158:2742–2752

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Nat Acad Sci U S A 86:6449–6453

    Article  CAS  Google Scholar 

  • Franklin SE, Mayfield SP (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr Opin Plant Biol 7:159–165

    Article  CAS  PubMed  Google Scholar 

  • Garg B, Dogra RC, Sharma PK (1999) High-efficiency transformation of Rhizobium leguminosarum by electroporation. Appl Environ Microbiol 65:2802–2804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen DC, Bretscher AP, Kaiser D (1978) Synergism between morphogenetic mutants of Myxococcus-xanthus. Dev Biol 64:284–296

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Yan D, Miyahara M, Inoue-Kashino N, Yamamoto YY, Kashino Y (2015) A stable and efficient nuclear transformation system for the diatom Chaetoceros gracilis. Photosynth Res 123:203–211

    Article  CAS  PubMed  Google Scholar 

  • Jeon S, Jeong B-R, Chang YK (2017a) Chemicals and fuels from microalgae. In: Lee SY (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, Cham, pp 1–21

    Google Scholar 

  • Jeon S, Lim J-M, Lee H-G, Shin S-E, Kang NK, Park Y-I, Oh H-M, Jeong W-J, B-r J, Chang YK (2017b) Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 10:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Nat Acad Sci U S A 99:1076–1081

    Article  CAS  Google Scholar 

  • Kang NK, Choi G-G, Kim EK, Shin S-E, Jeon S, Park MS, Jeong KJ, Jeong B-R, Chang YK, Yang J-W, Lee B (2015a) Heterologous overexpression of sfCherry fluorescent protein in Nannochloropsis salina. Biotechnol Rep 8:10–15

  • Kang NK, Jeon S, Kwon S, Koh HG, Shin SE, Lee B, Choi GG, Yang JW, Jeong BR, Chang YK (2015b) Effects of overexpression of a bHLH transcription factor on biomass and lipid production in Nannochloropsis salina. Biotechnol Biofuels 8:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiehl TR, Shen D, Khattak SF, Jian Li Z, Sharfstein ST (2011) Observations of cell size dynamics under osmotic stress. Cytometry A 79:560–569

    Article  PubMed  Google Scholar 

  • Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Nat Acad Sci U S A 108:21265–21269

    Article  Google Scholar 

  • Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Jeon J, Choi J, Kim S-R (2018) Rapid and efficient genetic transformation of the green microalga Chlorella vulgaris. J Appl Phycol 30:1735–1745

    Article  CAS  Google Scholar 

  • Ladygin VG (2003) The transformation of the unicellular alga Chlamydomonas reinhardtii by electroporation. Mikrobiologiia 72:658–665

    CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • León R, Fernández E (2007) Nuclear transformation of eukaryotic microalgae: historical overview, achievements and problems. Adv Exp Med Biol 616:1–11

    Article  PubMed  Google Scholar 

  • Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78:812–817

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Zar T, Naqvi SMS (2008) Multiple pulses improve electroporation efficiency in Agrobacterium tumefaciens. Electron J Biotechnol 11:0

    Article  CAS  Google Scholar 

  • Miyahara M, Aoi M, Inoue-Kashino N, Kashino Y, Ifuku K (2013) Highly efficient transformation of the diatom Phaeodactylum tricornutum by multi-pulse electroporation. Biosci Biotechnol Biochem 77:874–876

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Dorado J, Marcos-Torres FJ, Garcia-Bravo E, Moraleda-Munoz A, Perez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781

    Article  PubMed  PubMed Central  Google Scholar 

  • Mussgnug JH (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 99:5407–5418

    Article  CAS  PubMed  Google Scholar 

  • Nakayama T, Watanabe S, Mitsui K, Uchida H, Inouye I (1996) The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18SrDNA sequence data. Phycol Res 44:47–55

    Article  CAS  Google Scholar 

  • Oneill C, Horvath GV, Horvath E, Dix PJ, Medgyesy P (1993) Chloroplast transformation in plants - polyethylene-glycol (PEG) treatment of protoplasts is an alternative to biolistic delivery systems. Plant J 3:729–738

    Article  CAS  Google Scholar 

  • Perez J, Moraleda-Munoz A, Marcos-Torres FJ, Munoz-Dorado J (2016) Bacterial predation: 75 years and counting! Environ Microbiol 18:766–779

    Article  PubMed  Google Scholar 

  • Poliner E, Pulman JA, Zienkiewicz K, Childs K, Benning C, Farre EM (2018) A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnol J 16:298–309

  • Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239

    Article  CAS  PubMed  Google Scholar 

  • Reichenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  PubMed  Google Scholar 

  • Safi C, Liu DZ, Yap BHJ, Martin GJO, Vaca-Garcia C, Pontalier P-Y (2014) A two-stage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. J Appl Phycol 26:2379–2387

    Article  Google Scholar 

  • Safi C, Cabas Rodriguez L, Mulder WJ, Engelen-Smit N, Spekking W, van den Broek LAM, Olivieri G, Sijtsma L (2017) Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresour Technol 239:204–210

    Article  CAS  PubMed  Google Scholar 

  • Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG (2014) Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell 13:1450–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilo M (1970) Lysis of blue-green algae by myxobacter. J Bacteriol 104:453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  CAS  PubMed  Google Scholar 

  • Sukenik A, Beardall J, Kromkamp JC, Kopecky J, Masojidek J, van Bergeijk S, Gabai S, Shaham E, Yamshon A (2009) Photosynthetic performance of outdoor Nannochloropsis mass cultures under a wide range of environmental conditions. Aquat Microb Ecol 56:297–308

    Article  Google Scholar 

  • Suresh A, Kim YC (2013) Translocation of cell penetrating peptides on Chlamydomonas reinhardtii. Biotechnol Bioeng 110:2795–2801

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hill RT, Zheng T, Hu X, Wang B (2016) Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol 36:341–352

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Wang L, Zhang L, Balamurugan S, Li DW, Zeng H, Yang WD, Liu JS, Li HY (2016) The pivotal role of malic enzyme in enhancing oil accumulation in green microalga Chlorella pyrenoidosa. Microb Cell Factories 15:120

    Article  CAS  Google Scholar 

  • Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. J Biosci Bioeng 115:691–694

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Advanced Biomass R&D Center (ABC) of the Global Frontier Project, funded by the Ministry of Science and ICT (ABC-2010-0029728 and 2011-0031350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bongsoo Lee or Yong Keun Chang.

Electronic supplementary material

ESM 1

(DOCX 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Kang, N.K., Suh, W.I. et al. Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina. J Appl Phycol 31, 1153–1161 (2019). https://doi.org/10.1007/s10811-018-1599-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1599-7

Keywords

Navigation