Skip to main content

Advertisement

Log in

Transcriptional responses for biosynthesis of ginsenoside in arbuscular mycorrhizal fungi-treated Panax quinquefolius L. seedlings using RNA-seq

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Panax quinquefolius L. has been considered as an important traditional Chinese medicine with a history of more than 300 years in China. Ginsenoside is the main bioactive component. Our research group has found that the accumulation of ginsenoside is affected by arbuscular mycorrhizal fungi (AMF). However the underlying mechanism how AMF affected the biosynthesis of ginsenoside in P. quinquefolius is still unclear. In this study, the RNA-seq analysis was used to evaluate the effects of AMF (Rhizophagus intraradices, R. intraradices) on the expression of ginsenoside synthesis related genes in P. quinquefolius root. The result indicated that a symbiotic relationship between R. intraradices and P. quinquefolius was established. RNA-seq achieved approximately 48.62 G reads of all samples. Assembly of all the reads involved in all samples produced 63,420 transcripts and 24,137 unigenes. Differential expression analysis was performed between the control and AMF group. A total of 111 differentially expressed genes (DEGs) in response to AMF vs. control were identified, 78 and 33 transcripts were upregulated and downregulated, respectively. Based on the functional analysis, Gene ontology (GO) analysis revealed that most DEGs were related to stress responses and cellular metabolic processes. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified transduction, plant hormone signal transduction and terpenoids and polyketides biosynthesis pathways. Furthermore, the expression of glycolysis-related genes and ginsenoside synthesis related genes was largely induced by AMF. In conclusion, our results comprehensively elucidated the molecular mechanism how AMF affected the biosynthesis of ginsenoside in P. quinquefolius by transcriptome profiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adolfsson L, Nziengui H, De Abreu IN, Šimura J, Beebo A, Herdean A, Aboalizadeh J, Široká J, Moritz T, Novák O, Ljung K, Schoefs B, Speteaet C (2017) Enhanced secondary-and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiol 175:392–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

    Article  CAS  Google Scholar 

  • Armstrong L, Peterson RL (2002) The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paristype mycorrhizal association. Mycologia 94:587–595

    Article  PubMed  Google Scholar 

  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230

    Article  CAS  PubMed  Google Scholar 

  • Bruisson S, Maillot P, Schellenbaum P, Walter B, Gindro K, Deglène-Benbrahim L (2016) Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection. Phytochemistry 131:92–99

    Article  CAS  PubMed  Google Scholar 

  • Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W (2018) Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea may L.) grown in soils spiked with Lanthanum and Cadmium. Environ Pollut 241:607–615

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xie M, Fu Z, Lee SC, Wang X (2007) Development of a quality evaluation system for Panax quinquefolius. L based on HPLC chromatographic fingerprinting of seven major ginsenosides. Microche J 85:201–208

    Article  CAS  Google Scholar 

  • China Pharmacopoeia Committee (2015) Pharmacopoeia of Peoples Republic of China, P. Ch.P., Beijing, p 131

    Google Scholar 

  • Cho EJ, Lee DJ, Wee CD, Kim HL, Cheong YH, Cho JS, Sohn BK (2009) Effects of AMF inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci Hortic-Amsterdam 122:0–637

    Article  CAS  Google Scholar 

  • Dharmananda S (2002) The nature of ginseng: Traditional use, modern research, and the question of dosage. HerbalGram 54:34–51

    Google Scholar 

  • Dong LL, Xu J, Feng GQ, Li XW, Chen SL (2016) Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci Rep 6:31802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geneva M, Hristozkova M, Yonova P, Boychinova M, Stancheva I (2010) Effect of endomycorrhizal colonization with Glomus intraradices on growth and antioxidant capacity of Sideritis scardica Griseb. Gen Appl Plant Physiol 36:47–54

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squa-lene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46

    Article  CAS  PubMed  Google Scholar 

  • Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K (2015) RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant Cell Physiol 56:1490–1511

    Article  CAS  PubMed  Google Scholar 

  • Haralampidis K, Trojanowska M, Osbourn AE (2002) Biosynthesis of triterpenoid saponins in plants. Adv Biochem Eng/Biotechnol 75:31–49

    CAS  Google Scholar 

  • Jung JH, Kim HY, Kim HS, Jung SH (2020) Transcriptome analysis of Panax ginseng response to high light stress. J Ginseng Res 44:312–320

    Article  PubMed  Google Scholar 

  • Kapoor R, Anand G, Gupta P, Mandal S (2017) Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochem Rev 16:677–692

    Article  CAS  Google Scholar 

  • Khanna SM, Taxak PC, Jain PK, Saini R, Srinivasan R (2014) Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress. Appl Biochem Biotech 173:2241–2253

    Article  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Li HH, Wu L, Tang N, Liu R, Jin Z, Liu YQ, Li ZG (2020) Analysis of transcriptome and phytohormone profiles reveal novel insight into ginger (Zingiber officinale Rose) in response to postharvest dehydration stress. Postharvest Biol Tec 161:111087

    Article  CAS  Google Scholar 

  • Liu WC, Zheng YN, Han LK, Wang HM, Saito M, Ling MS, Kimura Y, Feng YX (2008) Saponins (Ginsenosides) from stems and leaves of Panax quinquefolius prevented high-fat diet-induced obesity in mice. Phytomedicine 15:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang J, Gao WY, Wang Q, Zhang LM, Man SL (2014) Optimization and quality assessment of adventitious roots culture in Panax quinquefolius L. Acta Physiol Plant 36:713–719

    Article  CAS  Google Scholar 

  • Liu CY, Zhang F, Zhang DJ, Zou YN, Wu QS (2020) Transcriptome analysis reveals improved root hair growth in trifoliate orange seedlings by arbuscular mycorrhizal fungi. Plant Growth Regul 1:1–9

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lou LN, Su XJ, Liu XH, Liu Z (2020) Transcriptome analysis of Luffa cylindrica (L.) Roem response to infection with Cucumber mosaic virus (CMV). Gene 737:144451

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Zhao S, Wei G, Zhao H, Qu Q (2016) Functional regulation of ginsenoside biosynthesis by RNA interferences of a UDP-glycosyltransferase gene in Panax ginseng and Panax quinquefolius. Plant Physiol Biochem 111:67

    Article  PubMed  CAS  Google Scholar 

  • Mandal S, Upadhyay S, Singh VP, Kapoor R (2015) Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiol Biochem 89:100–106

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild DL, Swan GA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • Mo GY, Huang F, Fang Y, Han LT, Kayla KP, Bu LJ, Du XW, Joan WB, Yin GH (2019) Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones. Chin J Nat Medicines 17:01310–00144

    Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-SEq. Nat Methods 5:621

    Article  CAS  PubMed  Google Scholar 

  • Raghuwanshi R, Sinha S (2014) Linking mycorrhizal technology with medicinal plant secondary metabolites. Microbial Diversity and Biotechnology in Food Security. Springer, New Delhi

    Google Scholar 

  • Ran ZF, Yang XT, Ding WN, Zhou J, Guo LP, Zhang YQ (2020) A preliminary investigation on the arbuscular mycorrhiza of the roots of cultivated Panax quinquefolius L. Chin J Chin Mater Med 9:2020–2056 (in Chinese)

    Google Scholar 

  • Rufykiri G, Declerck S, Dufey JE, Delvaux B (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytol 148:343–352

    Article  Google Scholar 

  • Rydlová J, Jelínková M, Dusek K, Dusková E, Vosátka M, Püschel D (2016) Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26:123–131

    Article  PubMed  CAS  Google Scholar 

  • Schlag EM, McIntosh MS (2013) The relationship between genetic and chemotypic diversity in American ginseng (Panax quinquefolius L.). Phytochemistry 93:96–104

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Pandit MK (2009) A new species of Panax L. (Araliaceae) from Sikkim Himalaya, India. Syst Bot 34:434e8

    Article  Google Scholar 

  • Sharma E, Anand G, Kapoor R (2017) Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Ann Bot 119:791801

  • Shi Y, Sun C, Zheng B, Gao B, Sun A (2013) Simultaneous determination of ten ginsenosides in American ginseng functional foods and ginseng raw plant materials by liquid chromatography tandem mass spectrometry. Food Anal Method 6:112–122

    Article  Google Scholar 

  • Shu B, Li WC, Liu LQ, Wei YZ, Shi SY (2016) Transcriptomes of arbuscular mycorrhizal fungi and Litchi host interaction after tree girdling. Front Microbiol 7:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106

    CAS  PubMed  Google Scholar 

  • Tian L, Shi SH, Ma LN, Zhou X, Luo SS, Zhang JF, Lu BH, Tian CJ (2019) The effect of Glomus intraradices on the physiological properties of Panax ginseng and on rhizospheric microbial diversity. J Gins Res 41:1–9

    CAS  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao SJ, Liang YL, Sun Y, Cao HJ, Han Y (2014) Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius. Funct Integr Genomics 14:559

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li J, Li J, Liu S, Wu X, Li J, Gao WY (2016) Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax quinquefolius adventitious root. Sci Rep-Uk 6:37263

    Article  CAS  Google Scholar 

  • Wang CH, Lei XY, Xia J, Wang JW (2018) Effect of down-regulating 1-deoxy-d-xylulose-5-phosphate reductoisomerase by RNAi on growth and artemisinin biosynthesis in Artemisia annua L. Plant Growth Regul 84:549–559

    Article  CAS  Google Scholar 

  • Wang WJ, Wu Y, Xu HH, Shang Y, Chen YC, Yana M, Li ZH, Walt DR (2019) Accumulation mechanism of indigo and indirubin in Polygonum tinctorium revealed by metabolite and transcriptome analysis. Ind Crop Prod 141:111783

    Article  CAS  Google Scholar 

  • Weber HC, Alexander S, Imhof S (1998) The enrichment of ginseng garden soils with vesicular-arbuscular mycorrhizal fungi, Ginseng in Europe. In: Weber HC, Zeuske D, Imhof S. (Eds.), Proceedings of 1st Europe Ginseng Congress, Marburg, Germany, pp. 59–66

  • Welling MT, Liu L, Rose TJ, Waters D, Benkendorff K (2016) Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biol 18

  • Wu YH, Wang H, Liu M, Li B, Chen X, Ma YT, Yan ZY (2021) Effects of native arbuscular mycorrhizae isolated on root biomass and secondary metabolites of Salvia miltiorrhiza Bge. Front Plant Sci 12:617892

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie MM, Chen SM, Zou YN, Srivastava AK, Rahman MM, Wu QS, Kučaet K (2021) Effects of Rhizophagus intraradices and Rhizobium trifolii on growth and N assimilation of white clover. Plant Growth Regul 93:311–318

    Article  CAS  Google Scholar 

  • Yang YJ, Jinag ZF, Guo JN, Yang XL, Xu N, Chen ZH, Hao J, Li JX, Pang JL, Shen CJ, Xu MJ (2018) Transcriptomic analyses of Chrysanthemum morifolium Ramat under UV-B radiation treatment reveal variations in the metabolisms associated with bioactive components. Ind Crop Prod 124:475–486

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang P, Li W, Zhang J, Huang F, Yang J, Bei Y, Lu Y (2013) De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance. Genomics 101:296–305

    Article  CAS  PubMed  Google Scholar 

  • Zhang XH, Han CZ, Gao HM, Cao YP (2019) Comparative transcriptome analysis of the garden asparagus (Asparagus officinalis L.) reveals the molecular mechanism for growth with arbuscular mycorrhizal fungi under salinity stress. Plant Physiol Biochem 141:20–29

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li YY, Chen XM, Meng ZX, Guo SX (2020) Combined metabolome and transcriptome analyses reveal the effects of mycorrhizal fungus Ceratobasidium sp. AR2 on the flavonoid accumulation in Anoectochilus roxburghii during different growth stages. Int J Mol Sci 21:564

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao H, Feng SS, Zhou W, Kai GY (2019) Transcriptomic analysis of postharvest toon buds and key enzymes involved in terpenoid biosynthesis during cold storage. Sci Hortic-Amsterdam 257:108747

    Article  CAS  Google Scholar 

  • Zhou J, Ran ZF, Yang XT, Li J (2019) Postharvest UV-B irradiation stimulated ginsenoside Rg1 biosynthesis through nitric oxide (NO) and jasmonic acid (JA) in Panax quinquefolius roots. Molecules 24:1462

    Article  CAS  PubMed Central  Google Scholar 

  • Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore G, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genom 15:1–19

    Article  CAS  Google Scholar 

  • Zhu HH, Zhang RQ, Chen WL, Gu ZH, Xie XL, Zhao HQ, Yao Q (2015) The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus. J Plant Physiol 178:27–34

    Article  CAS  PubMed  Google Scholar 

  • Zu YQ, Li ZR, Mei XY, Wu J, Cheng SC, Jiang YQ, Li Y (2018) Transcriptome analysis of main roots of Panax notoginseng identifies genes involved in saponin biosynthesis under arsenic stress. Plant Gene 16:1–7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (81891014), the National Key Research and Development Project (2017YFC1702702, 2017YFC1700705), the Shandong provincial Key Research Project (2019 − 1001), the Construction project for sustainable utilization of valuable traditional Chinese medicine resources (2060302), the Science and Technology Project of University of Jinan (XKY2014) and the Higher Educational Science and Technology Program of Jinan City (2020GXRC060).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YZ conceived and designed research. ZR and XY conducted experiments and analysed data. ZR and JZ wrote the manuscript. JZ and LG revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Yongqing Zhang or Jie Zhou.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interest regarding the publication of this work.

Additional information

Communicated by Hang-Wei Hu.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Z., Yang, X., Zhang, Y. et al. Transcriptional responses for biosynthesis of ginsenoside in arbuscular mycorrhizal fungi-treated Panax quinquefolius L. seedlings using RNA-seq. Plant Growth Regul 95, 83–96 (2021). https://doi.org/10.1007/s10725-021-00727-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00727-3

Keywords

Navigation