Skip to main content
Log in

Relationships between microstructure and pitting corrosion of ADI in sodium chloride solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Austempered ductile iron (ADI) has complex microstructure containing a multiphase matrix (called ‘ausferrite’), graphite spheres and oxide inclusions. The corrosion resistance of ADI is related to its microstructure which is determined by heat treatment parameters (like austempering temperature, austempering time, austenitising temperature and austenitising time). In the present paper, the electrochemical behaviour and corrosion resistance of ADI have been investigated by means of the electrochemical microcell technique and classical electrochemical measurements in sodium chloride solution. Particular attention has been paid to the influence of austempering temperature on the microstructure and pitting corrosion. It has been shown that ADI austempered at 430 °C has upper ausferritic microstructure and reveals a better corrosion resistance in sodium chloride solution than ADI austempered at 280 °C. Moreover, the corrosion resistance increases as the volume fracture of ferrite increases and the carbon content of austenite decreases. The good corrosion behaviour of ADI austempered at 430 °C was also related to the good coarsening of the austenite grains and broad ferrite needles (less ferrite/austenite interfaces). It has been demonstrated that silicon is the alloying element hindering the anodic dissolution of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Labrecque C, Gagne M (1998) Can Metall Q 37:343, doi:10.1016/S0008-4433(98)00031-7

    Article  CAS  Google Scholar 

  2. Hsu C-H, Jung-Kai R-JT (2005) Mater Sci Eng A 398:282, doi:10.1016/j.msea.2005.03.092

    Article  Google Scholar 

  3. Ghaderi AR, Nili Ahmadabadi M, Ghsemi HM (2003) Wear 255:410, doi:10.1016/S0043-1648(03)00156-X

    Article  CAS  Google Scholar 

  4. Prasad Rao P, Putatunda SK (2003) Mater Sci Eng A 349:136, doi:10.1016/S0921-5093(02)00633-0

    Article  Google Scholar 

  5. Yang J, Putatunda SK (2005) Mater Sci Eng A 406:217, doi:10.1016/j.msea.2005.06.036

    Article  Google Scholar 

  6. Janowak JF, Norton PA (1985) AFS Trans 88:123

    Google Scholar 

  7. Eric O, Jovanovic M, Sidanin L, Rajnovic D, Zec S (2006) Mater Des 27:617, doi:10.1016/j.matdes.2004.11.028

    CAS  Google Scholar 

  8. Zimba J, Simbi DJ, Navara E (2003) Cement Concr Compos 25:643, doi:10.1016/S0958-9465(02)00078-1

    Article  CAS  Google Scholar 

  9. Darwish N, Elliot R (1993) Mater Sci Technol 9:882

    Google Scholar 

  10. Heydarzadeh Sohi M, Nili Ahmadabadi M, Bahrami Vahdat A (2004) J Mater Process Technol 153-154:203, doi:10.1016/j.jmatprotec.2004.04.308

    Article  Google Scholar 

  11. Hemanth J (2000) J Mater Process Technol 101:159, doi:10.1016/S0924-0136(00)00424-6

    Article  Google Scholar 

  12. Pepe A, Galliano P, Cere S, Aparicio M, Duran A (2005) Mater Lett 59:2219, doi:10.1016/j.matlet.2005.03.001

    Article  CAS  Google Scholar 

  13. Krawiec H, Stypuła B, Stoch J, Mikołajczyk M (2006) Corros Sci 48:595, doi:10.1016/j.corsci.2005.02.019

    Article  CAS  Google Scholar 

  14. Krawiec H, Vignal V, Banas J (2006) J Electrochem Soc 153:B231, doi:10.1149/1.2197635

    Article  CAS  Google Scholar 

  15. Bohni H, Suter T, Assi F (2000) Technol Surf Coat 130:80, doi:10.1016/S0257-8972(00)00681-2

    Article  CAS  Google Scholar 

  16. Putatunda SK (2001) Mater Sci Eng A 297:31

    Article  Google Scholar 

  17. Roberts CS, Aime T (1953) J Met 197:203

    Google Scholar 

  18. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution, 2nd English edition, Chapter IV. National Association of Corrosion Engineers, Houston, Texas, USA, pp 452–455

    Google Scholar 

  19. Monchoux JP, Verdu C, Tougeres G, Reynaud A (2001) Acta Mater 49:4355, doi:10.1016/S1359-6454(01)00230-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Krawiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawiec, H., Lelito, J., Tyrała, E. et al. Relationships between microstructure and pitting corrosion of ADI in sodium chloride solution. J Solid State Electrochem 13, 935–942 (2009). https://doi.org/10.1007/s10008-008-0636-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0636-x

Keywords

Navigation