Skip to main content

Advertisement

Log in

A functionalized Sup35NM nanofibril-assisted oriented antibody capture in lateral flow immunoassay for sensitive detection of dengue type II NS1

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Rapid and sensitive dengue non-structural protein 1 (NS1) detection assay is essential for the treatment of disease and currently releases high medical cost burdens. To address the limitations of conventional LFIA strips, we have developed an improved Sup35NM-Z-based LFIA that immobilizes antibodies on cellulose membranes in an orientated manner to increase the sensitivity of LFIA strips. A dual-functional Sup35NM nanofibril was fabricated by fusion with the antibody binding domain; resultant nanofibril from the amyloid Sup35NM was sprayed on the T-line to orientate the capture antibody and produces fluorescence signals. Antibody binding analysis showed that self-assembly of the Sup35NM monomer does not affect the binding activity of the Z-domain with the antibody. The NS1 for DENV-2 infection was chosen as a model target antigen to assess the feasibility of the Sup35NM-Z-domain-based LFIA platform. Under optimal conditions, the Sup35NM-Z-domain-based LFIA detected NS1 within 15 min with a detection limit of 1.29 ng/ml, while the detection limit of traditional LFIA with the same concentration of anti-NS1-Ab1 on the T-line by conventional physical adsorption was 2.20 ng/ml, 1.7 times higher than that of Sup35NM-Z-domain-based LFIA. As compared to traditional LFIAs, the Sup35NM-Z-based LFIA had a wide detection range of 1.29–625 ng/mL. The LFIA's clinical performance in identifying NS1 was also assessed using 15 clinical samples. The LFIA accurately recognized positive and negative samples, equal to 86.7% accuracy. The developed Sup35NM-Z-domain-based LFIA in this study offers great potential for the identification of target markers because of its greatly improved sensitivity and wider detection range.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Tissera H, Pannila-Hetti N, Samaraweera P, Weeraman J, Palihawadana P, Amarasinghe A (2016) Sustainable dengue prevention and control through a comprehensive integrated approach: the Sri Lankan perspective. WHO South-East Asia J Public Health 5(2):106–112. https://doi.org/10.4103/2224-3151.206246

    Article  PubMed  Google Scholar 

  2. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8(12 Suppl):S7-16. https://doi.org/10.1038/nrmicro2460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496(7446):504–507. https://doi.org/10.1038/nature12060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sharp T, Moreira R, Soares MJ, Miguel da Costa L, Mann J, Delorey M, Hunsperger E, Muñoz-Jordán J, Colón C, Margolis H, de Caravalho A, Tomashek K (2015) Underrecognition of dengue during 2013 epidemic in Luanda. Angola Emerg Infect Dis J 21(8):1311. https://doi.org/10.3201/eid2108.150368

    Article  CAS  Google Scholar 

  5. Muller DA, Depelsenaire AC, Young PR (2017) Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis 215(suppl_2) S89-S95. https://doi.org/10.1093/infdis/jiw649

  6. Yrad FM, Castanares JM, Alocilja EC (2019) Visual detection of dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics (Basel) 9(3). https://doi.org/10.3390/diagnostics9030074

  7. Guzman MG, Jaenisch T, Gaczkowski R, Ty Hang VT, Sekaran SD, Kroeger A, Vazquez S, Ruiz D, Martinez E, Mercado JC, Balmaseda A, Harris E, Dimano E, Leano PS, Yoksan S, Villegas E, Benduzu H, Villalobos I, Farrar J, Simmons CP (2010) Multi-country evaluation of the sensitivity and specificity of two commercially-available NS1 ELISA assays for dengue diagnosis. PLoS Negl Trop Dis 4(8). https://doi.org/10.1371/journal.pntd.0000811

  8. Lee J, Kim YE, Kim HY, Sinniah M, Chong CK, Song HO (2015) Enhanced performance of an innovative dengue IgG/IgM rapid diagnostic test using an anti-dengue EDI monoclonal antibody and dengue virus antigen. Sci Rep 5:18077. https://doi.org/10.1038/srep18077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Klungthong C, Gibbons RV, Thaisomboonsuk B, Nisalak A, Kalayanarooj S, Thirawuth V, Nutkumhang N, Mammen MP Jr, Jarman RG (2007) Dengue virus detection using whole blood for reverse transcriptase PCR and virus isolation. J Clin Microbiol 45(8):2480–2485. https://doi.org/10.1128/JCM.00305-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cecchetto J, Fernandes FCB, Lopes R, Bueno PR (2017) The capacitive sensing of NS1 flavivirus biomarker. Biosens Bioelectron 87:949–956. https://doi.org/10.1016/j.bios.2016.08.097

    Article  CAS  PubMed  Google Scholar 

  11. Dias AC, Gomes-Filho SL, Silva MM, Dutra RF (2013) A sensor tip based on carbon nanotube-ink printed electrode for the dengue virus NS1 protein. Biosens Bioelectron 44:216–221. https://doi.org/10.1016/j.bios.2012.12.033

    Article  CAS  PubMed  Google Scholar 

  12. Figueiredo A, Vieira NC, dos Santos JF, Janegitz BC, Aoki SM, Junior PP, Lovato RL, Nogueira ML, Zucolotto V, Guimaraes FE (2015) Electrical detection of dengue biomarker using egg yolk immunoglobulin as the biological recognition element. Sci Rep 5:7865. https://doi.org/10.1038/srep07865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Silva MM, Dias AC, Cordeiro MT, Marques E Jr, Goulart MO, Dutra RF (2014) A thiophene-modified screen printed electrode for detection of dengue virus NS1 protein. Talanta 128:505–510. https://doi.org/10.1016/j.talanta.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  14. Parkash O, Shueb RH (2015) Diagnosis of dengue infection using conventional and biosensor based techniques. Viruses 7(10):5410–5427. https://doi.org/10.3390/v7102877

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bahadır EB, Sezgintürk MK (2016) Lateral flow assays: principles, designs and labels. TrAC, Trends Anal Chem 82:286–306. https://doi.org/10.1016/j.trac.2016.06.006

    Article  CAS  Google Scholar 

  16. Yao J, Wang Z, Guo L, Xu X, Liu L, Xu L, Song S, Xu C, Kuang H (2020) Advances in immunoassays for organophosphorus and pyrethroid pesticides. TrAC, Trends Anal Chem 131:116022. https://doi.org/10.1016/j.trac.2020.116022

    Article  CAS  Google Scholar 

  17. He K, Bu T, Zhao S, Bai F, Zhang M, Tian Y, Sun X, Dong M, Wang L (2021) Well-orientation strategy for direct binding of antibodies: development of the immunochromatographic test using the antigen modified Fe2O3 nanoprobes for sensitive detection of aflatoxin B1. Food Chem 364:129583. https://doi.org/10.1016/j.foodchem.2021.129583

    Article  CAS  PubMed  Google Scholar 

  18. Panraksa Y, Apilux A, Jampasa S, Puthong S, Henry CS, Rengpipat S, Chailapakul O (2021) A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. Sens Actuators B Chem 329:129241. https://doi.org/10.1016/j.snb.2020.129241

    Article  CAS  Google Scholar 

  19. Ince B, Sezginturk MK (2022) Lateral flow assays for viruses diagnosis: up-to-date technology and future prospects. Trends Analyt Chem 157:116725. https://doi.org/10.1016/j.trac.2022.116725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Linares EM, Kubota LT, Michaelis J, Thalhammer S (2012) Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates. J Immunol Methods 375(1–2):264–270. https://doi.org/10.1016/j.jim.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  21. Cheng N, Shi Q, Zhu C, Li S, Lin Y, Du D (2019) Pt-Ni(OH)(2) nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens Bioelectron 142:111498. https://doi.org/10.1016/j.bios.2019.111498

    Article  CAS  PubMed  Google Scholar 

  22. Zhu H, Snyder M (2003) Protein chip technology. Curr Opin Chem Biol 7(1):55–63. https://doi.org/10.1016/s1367-5931(02)00005-4

    Article  CAS  PubMed  Google Scholar 

  23. Gao S, Guisan JM, Rocha-Martin J (2022) Oriented immobilization of antibodies onto sensing platforms - a critical review. Anal Chim Acta 1189:338907. https://doi.org/10.1016/j.aca.2021.338907

    Article  CAS  PubMed  Google Scholar 

  24. Yue H, Zhou Y, Wang P, Wang X, Wang Z, Wang L, Fu Z (2016) A facile label-free electrochemiluminescent biosensor for specific detection of Staphylococcus aureus utilizing the binding between immunoglobulin G and protein A. Talanta 153:401–406. https://doi.org/10.1016/j.talanta.2016.03.043

    Article  CAS  PubMed  Google Scholar 

  25. Lou D, Fan L, Cui Y, Zhu Y, Gu N, Zhang Y (2018) Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal Chem 90(11):6502–6508. https://doi.org/10.1021/acs.analchem.7b05410

    Article  CAS  PubMed  Google Scholar 

  26. Kim H-R, Bong J-H, Jung J, Sung JS, Kang M-J, Park J-G, Pyun J-C (2020) An on-chip chemiluminescent immunoassay for bacterial detection using in situ-synthesized cadmium sulfide nanowires with passivation layers. BioChip J 14(3):268–278. https://doi.org/10.1007/s13206-020-4305-1

    Article  CAS  Google Scholar 

  27. Checco JW, Kreitler DF, Thomas NC, Belair DG, Rettko NJ, Murphy WL, Forest KT, Gellman SH (2015) Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proc Natl Acad Sci 112(15):4552–4557. https://doi.org/10.1073/pnas.1420380112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yang JM, Kim KR, Jeon S, Cha HJ, Kim CS (2021) A sensitive paper-based lateral flow immunoassay platform using engineered cellulose-binding protein linker fused with antibody-binding domains. Sens Actuators B Chem 329:129099. https://doi.org/10.1016/j.snb.2020.129099

    Article  CAS  Google Scholar 

  29. Men D, Zhou J, Li W, Wei CH, Chen YY, Zhou K, Zheng Y, Xu K, Zhang ZP, Zhang XE (2018) Self-assembly of antigen proteins into nanowires greatly enhances the binding affinity for high-efficiency target capture. ACS Appl Mater Interfaces 10(48):41019–41025. https://doi.org/10.1021/acsami.8b12511

    Article  CAS  PubMed  Google Scholar 

  30. Wang M, Huang M, Zhang J, Ma Y, Li S, Wang J (2017) A novel secretion and online-cleavage strategy for production of cecropin A in Escherichia coli. Sci Rep 7(1):7368. https://doi.org/10.1038/s41598-017-07411-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Men D, Zhou J, Li W, Leng Y, Chen X, Tao S, Zhang XE (2016) Fluorescent protein nanowire-mediated protein microarrays for multiplexed and highly sensitive pathogen detection. ACS Appl Mater Interfaces 8(27):17472–17477. https://doi.org/10.1021/acsami.6b04786

    Article  CAS  PubMed  Google Scholar 

  32. Deisenhofer J (1981) Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry 20(9):2361. http://sci-hub.tw/10.1021/bi00512a001

  33. Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, Wang J, Wang X (2014) Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis. PLoS ONE 9(4):e95263. https://doi.org/10.1371/journal.pone.0095263

    Article  PubMed Central  PubMed  Google Scholar 

  34. Schmuck B, Gudmundsson M, Blomqvist J, Hansson H, Hard T, Sandgren M (2018) Production of ready-to-use functionalized Sup35 nanofibrils secreted by Komagataella pastoris. ACS Nano 12(9):9363–9371. https://doi.org/10.1021/acsnano.8b04450

    Article  CAS  PubMed  Google Scholar 

  35. Chen R, Li H, Zhang H, Zhang S, Shi W, Shen J, Wang Z (2013) Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk. Anal Bioanal Chem 405(21):6783–6789. https://doi.org/10.1007/s00216-013-7150-4

    Article  CAS  PubMed  Google Scholar 

  36. Liu B, Zhang M, Zhou C, Ren L, Cheng H, Ao Y, Zhang H (2013) Synthesis of monodisperse, large scale and high solid content latexes of poly(n-butyl acrylate) by a one-step batch emulsion polymerization. Colloid Polym Sci 291(10):2385–2398. https://doi.org/10.1007/s00396-013-2987-9

    Article  CAS  Google Scholar 

  37. Tashiro M, Tejero R, Zimmerman DE, Celda B, Nilsson B, Montelione GT (1997) High-resolution solution NMR structure of the Z domain of staphylococcal protein A. J Mol Biol 272(4):573–590. https://doi.org/10.1006/jmbi.1997.1265

    Article  CAS  PubMed  Google Scholar 

  38. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9-23. https://doi.org/10.1016/S1359-0278(98)00002-9

    Article  CAS  PubMed  Google Scholar 

  39. Rahman MM, Schmuck B, Hansson H, Hard T, Westermark GT, Sandgren M (2021) Enhanced detection of ATTR amyloid using a nanofibril-based assay. Amyloid 28(3):158–167. https://doi.org/10.1080/13506129.2021.1886072

    Article  CAS  PubMed  Google Scholar 

  40. Schmuck B, Sandgren M, Hard T (2017) A fine-tuned composition of protein nanofibrils yields an upgraded functionality of displayed antibody binding domains. Biotechnol J 12(6). https://doi.org/10.1002/biot.201600672

  41. Shang Y, Cai S, Ye Q, Wu Q, Shao Y, Qu X, Xiang X, Zhou B, Ding Y, Chen M, Xue L, Zhu H, Zhang J (2021) Quantum dot nanobeads-labelled lateral flow immunoassay strip for rapid and sensitive detection of salmonella typhimurium based on strand displacement loop-mediated isothermal amplification. Engineering. https://doi.org/10.1016/j.eng.2021.03.024

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Science and Technology Program of Guangzhou, China (202205110007).

Author information

Authors and Affiliations

Authors

Contributions

TQ: investigation, methodology, data curation, experimentation, writing—original draft. PW: investigation, resources. QZ and KK: formal analysis, resources. YM: formal analysis, investigation, supervision, project administration. JW: conceptualization; writing, review and editing; supervision; project administration; funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jufang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

The Sup35NM-Z-domain can self-assemble into nanofibers driven by Sup35NM.

The Sup35NM-Z-domain immobilizes antibodies on cellulose membranes in an orientated manner.

The Sup35NM-Z-based LFIA configuration does not need expensive secondary antibodies and reduces the chemical labeling step of the antibody.

The proposed method for NS1 detection achieves improved sensitivity with a LOD of 1.29 ng/ml.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 487 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., Wu, P., Zhang, Q. et al. A functionalized Sup35NM nanofibril-assisted oriented antibody capture in lateral flow immunoassay for sensitive detection of dengue type II NS1. Microchim Acta 191, 39 (2024). https://doi.org/10.1007/s00604-023-06109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06109-y

Keywords

Navigation