Skip to main content
Log in

ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Titanium carbide quantum dots functionalized with ε-poly-L-lysine (PLL) were synthesized by sonication cutting and hydrothermal synthesis. The deprotonated Ti3C2 MXene quantum dots (Ti3C2 MQDs) exhibit excitation wavelength-dependent blue photoluminescence with typical excitation/emission peaks at 330/415 nm and a quantum yield of 22% due to strong quantum confinement. The fluorescence of ε-poly-L-lysine protected Ti3C2 MQDs (PLL-protected Ti3C2 MQDs) is reduced via an inner filter effect after the addition of cytochrome c (cyt-c). Response to cyt-c is linear in the 0.2 to 40 μM concentration range and the detection limit is 20.5 nM. In the presence of trypsin, cyt-c is hydrolyzed to small peptides, and the Fe3+ ion in cyt-c probably is reduced to Fe2+ with the aid of the digestive enzyme. This results in the restoration of the blue fluorescence of the modified MQDs. Fluorescence increases linearly in the 0.5 to 80 μg mL−1 trypsin concentration range with the detection limit of 0.1 μg mL−1. The method was successfully applied to the determination of cyt-c and trypsin in spiked serum samples.

Schematic of a method for the fluorometric “turn-off-on” determination of cytochrome c and trypsin based on ε-poly-L-lysine (PLL) protect MXene quantum dots (Ti3C2 MQDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barsoum MW (2000) The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Ch 28:201–281

    Article  CAS  Google Scholar 

  2. Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y (2015) Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett 6:4026–4031

    Article  CAS  Google Scholar 

  3. Yu XF, Li YC, Cheng JB, Liu ZB, Li QZ, Li WZ, Yang X, Xiao B (2015) Monolayer Ti2CO2: a promising candidate for NH3 sensor or capturer with high sensitivity and selectivity. ACS Appl Mater Interfaces 7:13707–13713

    Article  CAS  Google Scholar 

  4. Liu H, Duan CY, Yang CH, Shen WQ, Wang F, Zhu ZF (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors Actuators B Chem 218:60–66

    Article  CAS  Google Scholar 

  5. Wang F, Yang CH, Duan CY, Xiao D, Tang Y, Zhu JF (2015) An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free. Biosensor J Elec-trochem Soc 162:B16–B21

    Article  CAS  Google Scholar 

  6. Xue Q, Zhang HJ, Zhu MS, Pei ZX, Li HF, Wang ZF, Huang Y, Huang Y, Deng QH, Zhou J, Du SY, Huang Q, Zhi CY (2017) Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29:1604847

    Article  Google Scholar 

  7. Chen X, Sun XK, Xu W, Pan GC, Zhou DL, Zhu JY, Wang H, Bai X, Dong B, Song HW (2018) Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots for the intracellular pH sensor. Nanoscale 10:1111–1118

    Article  CAS  Google Scholar 

  8. Xu Q, Ding L, Wen YY, Yang WJ, Zhou HJ, Chen XZ, Jason S, Zhou AG, Wee-Jun O, Li N (2018) High photoluminescence quantum yield of 18.7% by nitrogen-doped Ti3C2 MXene quantum dots. J Mater Chem 6:6360–6369

    Article  CAS  Google Scholar 

  9. Chen TT, Tian X, Liu CL, Ge J, Chu X, Li Y (2015) Fluorescence activation imaging of cytochrome c released from mitochondria using aptameric nanosensor. J Am Chem Soc 137:982–989

    Article  CAS  Google Scholar 

  10. Sakaida I, Kimura T, Yamasaki T, Fukumoto Y, Watanabe K, Aoyama M, Okita K (2005) Cytochrome c is a possible new marker for fulminant hepatitis in humans. J Gastroenterol 40:179–185

    Article  CAS  Google Scholar 

  11. Manickam P, Kaushik A, Karunakaran C, Bhansali S (2017) Recent advances in cytochrome c biosensing technologies. Biosens Bioelectron 87:654–668

    Article  CAS  Google Scholar 

  12. Wang T, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y (2012) Enhanced Electrochemiluminescence of CdSe quantum dots composited with Graphene oxide and chitosan for sensitive sensor. Biosens Bioelectron 31:369–375

    Article  CAS  Google Scholar 

  13. Hu XW, Mao CJ, Song JM, Niu HL, Zhang SY, Huang HP (2013) Fabrication of GO/PANi/CdSe Nanocomposites for sensitive Electrochemiluminescence. Biosens Bioelectron 41:372–378

    Article  CAS  Google Scholar 

  14. Picklo MJ, Zhang J, Nguyen VQ, Graham DG, Montine TJ (1999) High-pressure liquid chromatography quantitation of cytochrome c using 393 nm detection. Anal Biochem 276:166–170

    Article  CAS  Google Scholar 

  15. Hu YL, He Y, Han YX, Ge YL, Song GW, Zhou JG (2018) Poly(styrene-4-sulfonate)-protected copper nanoclusters as a fluorometric probe for sequential detection of cytochrome c and trypsin. Microchim Acta 185:383

    Article  Google Scholar 

  16. Zhang XM, Qin YP, Ye HL, Ma XT, He XW, Li WY, Zhang YK (2018) Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c. Microchim Acta 185:173

    Article  Google Scholar 

  17. Cao L, Li XQ, Qin LX, Kang SZ, Li GD (2017) Graphene quantum dots supported by graphene oxide as a sensitive fluorescence nanosensor for cytochrome c detection and intracellular imaging. J Mater Chem B 5:6300–6306

    Article  CAS  Google Scholar 

  18. Amin Rehab M, Elfeky Souad A, Thomas V (2017) Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C. Biosens Bioelectron 98:415–420

    Article  CAS  Google Scholar 

  19. Xian Y, Liu F, Xian Y, Zhou Y, Jin L (2006) Preparation of methylene blue-doped silica nanoparticle and its application to Electroanalysis heme proteins. Electrochim Acta 51:6527–6532

    Article  CAS  Google Scholar 

  20. Poturnayova A, Castillo G, Subjakova V, Tatarko M, Snejdarkova M, Hianik T (2017) Optimization of cytochrome c detection by acoustic and electrochemical methods based on Aptamer sensors. Sens. Actuator B-Chem 238:817–827

    Article  CAS  Google Scholar 

  21. Chinnakotla S, Radosevich DM, Dunn TB (2014) Long-term outcomes of Total Pancreatectomy and islet auto transplantation for hereditary/genetic pancreatitis. J Am Coll Cardiol 218:530–543

    Google Scholar 

  22. Pallagi P, Venglovecz V, Rakonczay ZJ (2011) Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR cl-channels and luminal. Gastroenterology 141:2228–U413

    Article  CAS  Google Scholar 

  23. Braganza JM, Lee SH (2011) McCloy RF. Chronic pancreatitis 377:1184–1197

    CAS  Google Scholar 

  24. Li HX, Yang MM, Kong DS (2019) Sensitive fluorescence sensor for point-of-care detection of trypsin using glutathione-stabilized gold nanoclusters sensors. Sens. Actuator B-Chem 282:366–372

    Article  CAS  Google Scholar 

  25. Hong ML, Li LJ, Han HX (2014) A label-free fluorescence assay for trypsin based on the Electron transfer between oligonucleotide-stabilized Ag Nanoclusters and cytochrome c. Anal Sci 30:811–815

    Article  CAS  Google Scholar 

  26. Salehnia F, Hosseini M, Ganjali MR (2017) A fluorometric aptamer based assay for cytochrome C using fluorescent graphitic carbon nitride nanosheets. Microchim Acta 184(7):2157–2163

    Article  CAS  Google Scholar 

  27. Zhou Z, Liu W, Wang Y, Ding F, Liu X, Zhao Q, Rao H (2019) A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Microchim Acta 186(5):272

    Article  Google Scholar 

  28. Yan PT, Zhang RJ, Jia J, Wu C, Zhou AG, Xu J, Zhang XS (2015) Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J. Power Sources 284:38–43

    Article  CAS  Google Scholar 

  29. Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W (2016) Se4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499

    Article  CAS  Google Scholar 

  30. Liu S, Tian JQ, Wang L, Zhang YW, Qin XY, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, PhotoluminAdv. Mater 24:2037–2041

    CAS  Google Scholar 

  31. Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB (2015) Carbon and Graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947

    Article  CAS  Google Scholar 

  32. Fan JY, Chu PK (2010) Group IV nanoparticles: synthesis, properties, and biological applications. Small 6:2080–2098

    Article  CAS  Google Scholar 

  33. Brown GC, Borutaite V (2008) Regulation of apoptosis by the redox state of cytochrome c. Borutaite, Biochim. Biophys. Acta-Bioenerg 1777:877–881

    Article  CAS  Google Scholar 

  34. Liang H, Klie RF, Oeguet S (2016) First-principles study of size-and edge-dependent properties of MXene nanoribbons. Phys Rev B 93:115412

    Article  Google Scholar 

  35. Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Al-shareef HN (2015) Effect of Postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene Elec-trodes for Supercapacitor applications. Chem Mater 27:5314–5323

    Article  CAS  Google Scholar 

  36. Li X, Zhu SJ, Xu B, Ma K, Zhang JH, Yang B, Tian WJ (2013) Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale 5:7776–7779

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Supported by National Natural Science Foundation of China (21707030) and Wuhan Youth Science and technology plan (2016070204010133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu He or Gongwu Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhou, J., He, Y. et al. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim Acta 186, 770 (2019). https://doi.org/10.1007/s00604-019-3945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3945-0

Keywords

Navigation