Skip to main content

Advertisement

Log in

Highly feasible procedure for laparoscopic transplantation of cell sheets under pneumoperitoneum in porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

Cell sheet technology is one of the most successful methodologies in regenerative medicine. Various applications of cell sheets have been introduced in first-in-human studies in several clinical fields. When transplanting a cell sheet into internal organs, a relatively large incision is required for delivery due to difficulty handling the sheet. We developed a laparoscopic delivery procedure for safe and easy transplantation of cell sheets in a porcine model.

Methods

Pneumoperitoneum was established by inflation with CO2. First, to increase the strength during handling, fibrin was sprayed onto the surface of the cell sheet, and then a myoblast sheet was placed onto the newly developed carrier. The sheets were pinched with laparoscopic forceps to insert into the abdominal cavity through the laparoscopic port. Myoblast sheets were then applied to the surface of the liver, colon, small intestine, and stomach, and procedure times were measured. At three days post transplantation, a histopathological examination was performed to confirm engraftment of the sheet. The function and engraftment were also analyzed in a duodenal endoscopic submucosal dissection (ESD) model.

Results

The fibrin-processed myoblast sheet was able to be managed with conventional laparoscopic forceps without breaking. Despite the drastic change in air pressure by passing through the laparoscopic port, the sheets suffered no apparent damage. The transplantation procedure times did not markedly differ among transplant sites. A histopathological examination revealed thin-layered, desmin-positive cells at each transplant site. With transplantation following ESD, the engrafted myoblast sheets effectively prevented delayed perforation.

Conclusions

Our procedure is simple, and the system involves a carrier made of medically fit silicon, commercially available fibrin glue and conventional laparoscopic forceps. Our procedure is a powerful tool for laparoscopical cell sheet transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujita Y, Kinoshita M, Furukawa Y, Nagano T, Hashimoto H, Hirami Y, Kurimoto Y, Arakawa K, Yamazaki K, Okada Y, Katakami N, Uno E, Matsubara Y, Fukushima M, Nada A, Losordo DW, Asahara T, Okita Y, Kawamoto A (2014) Phase II clinical trial of CD34+ cell therapy to explore endpoint selection and timing in patients with critical limb ischemia. Circ J 78:490–501

    Article  CAS  Google Scholar 

  2. Hagege AA, Marolleau JP, Vilquin JT, Alheritiere A, Peyrard S, Duboc D, Abergel E, Messas E, Mousseaux E, Schwartz K, Desnos M, Menasche P (2006) Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 114:I108-113

    Article  Google Scholar 

  3. Esch JS, Knoefel WT, Klein M, Ghodsizad A, Fuerst G, Poll LW, Piechaczek C, Burchardt ER, Feifel N, Stoldt V, Stockschlader M, Stoecklein N, Tustas RY, Eisenberger CF, Peiper M, Haussinger D, Hosch SB (2005) Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells 23:463–470

    Article  Google Scholar 

  4. Spahr L, Chalandon Y, Terraz S, Kindler V, Rubbia-Brandt L, Frossard JL, Breguet R, Lanthier N, Farina A, Passweg J, Becker CD, Hadengue A (2013) Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PloS one 8:e53719

    Article  CAS  Google Scholar 

  5. Glass JD, Hertzberg VS, Boulis NM, Riley J, Federici T, Polak M, Bordeau J, Fournier C, Johe K, Hazel T, Cudkowicz M, Atassi N, Borges LF, Rutkove SB, Duell J, Patil PG, Goutman SA, Feldman EL (2016) Transplantation of spinal cord-derived neural stem cells for ALS: Analysis of phase 1 and 2 trials. Neurology 87:392–400

    Article  CAS  Google Scholar 

  6. Terai S, Ishikawa T, Omori K, Aoyama K, Marumoto Y, Urata Y, Yokoyama Y, Uchida K, Yamasaki T, Fujii Y, Okita K, Sakaida I (2006) Improved liver function in patients with liver cirrhosis after autologous bone marrow cell infusion therapy. Stem Cells 24:2292–2298

    Article  CAS  Google Scholar 

  7. Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD (2018) A first-in-human, phase i study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22:941–950

    Article  CAS  Google Scholar 

  8. Sugimoto S, Kobayashi E, Fujii M, Ohta Y, Arai K, Matano M, Ishikawa K, Miyamoto K, Toshimitsu K, Takahashi S, Nanki K, Hakamata Y, Kanai T, Sato T (2021) An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 592:99–104

    CAS  PubMed  Google Scholar 

  9. Sugimoto S, Ohta Y, Fujii M, Matano M, Shimokawa M, Nanki K, Date S, Nishikori S, Nakazato Y, Nakamura T, Kanai T, Sato T (2018) Reconstruction of the human colon epithelium in vivo. Cell Stem Cell 22:171–176

    Article  CAS  Google Scholar 

  10. Kobayashi J, Kikuchi A, Aoyagi T, Okano T (2019) Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. J Biomed Mater Res 107:955–967

    Article  CAS  Google Scholar 

  11. Takahashi H, Okano T (2019) Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev 138:276–292

    Article  CAS  Google Scholar 

  12. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  Google Scholar 

  13. Sawa Y, Yoshikawa Y, Toda K, Fukushima S, Yamazaki K, Ono M, Sakata Y, Hagiwara N, Kinugawa K, Miyagawa S (2015) Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J 79:991–999

    Article  Google Scholar 

  14. Yoshikawa Y, Miyagawa S, Toda K, Saito A, Sakata Y, Sawa Y (2018) Myocardial regenerative therapy using a scaffold-free skeletal-muscle-derived cell sheet in patients with dilated cardiomyopathy even under a left ventricular assist device: a safety and feasibility study. Surg Today 48:200–210

    Article  CAS  Google Scholar 

  15. Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, Sakata Y, Hamada S, Toda K, Pak K, Takeuchi M, Sawa Y (2017) Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. J Am Heart Assoc. https://doi.org/10.1161/JAHA.116.003918

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sawa Y, Miyagawa S, Sakaguchi T, Fujita T, Matsuyama A, Saito A, Shimizu T, Okano T (2012) Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today 42:181–184

    Article  Google Scholar 

  17. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New Engl J Med 351:1187–1196

    Article  CAS  Google Scholar 

  18. Yamamoto K, Yamato M, Morino T, Sugiyama H, Takagi R, Yaguchi Y, Okano T, Kojima H (2017) Middle ear mucosal regeneration by tissue-engineered cell sheet transplantation. NPJ Regen Med 2:6

    Article  Google Scholar 

  19. Iwata T, Yamato M, Washio K, Yoshida T, Tsumanuma Y, Yamada A, Onizuka S, Izumi Y, Ando T, Okano T, Ishikawa I (2018) Periodontal regeneration with autologous periodontal ligament-derived cell sheets—A safety and efficacy study in ten patients. Regen Ther 9:38–44

    Article  Google Scholar 

  20. Kanzaki M, Takagi R, Washio K, Kokubo M, Mitsuboshi S, Isaka T, Yamato M (2021) Bio-artificial pleura using autologous dermal fibroblast sheets to mitigate air leaks during thoracoscopic lung resection. NPJ Regen Med 6:2

    Article  CAS  Google Scholar 

  21. Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, Okano T, Onuki T (2008) Functional closure of visceral pleural defects by autologous tissue engineered cell sheets. Eur J Cardiothorac Surg 34:864–869

    Article  Google Scholar 

  22. Matsumoto R, Kanetaka K, Maruya Y, Yamaguchi S, Kobayashi S, Miyamoto D, Ohnita K, Sakai Y, Hashiguchi K, Nakao K, Eguchi S (2020) The efficacy of autologous myoblast sheet transplantation to prevent perforation after duodenal endoscopic submucosal dissection in porcine model. Cell Transplant 29:963689720963882

    Article  Google Scholar 

  23. Hashiguchi K, Maruya Y, Matsumoto R, Yamaguchi S, Ogihara K, Ohnita K, Kobayashi S, Kanetaka K, Nakao K, Eguchi S (2021) Establishment of an in-vivo porcine delayed perforation model after duodenal endoscopic submucosal dissection. Dig Endosc 33:381–389

    Article  Google Scholar 

  24. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143:582–588

    Article  Google Scholar 

  25. Yamaguchi N, Isomoto H, Kobayashi S, Kanai N, Kanetaka K, Sakai Y, Kasai Y, Takagi R, Ohki T, Fukuda H, Kanda T, Nagai K, Asahina I, Nakao K, Yamato M, Okano T, Eguchi S (2017) Oral epithelial cell sheets engraftment for esophageal strictures after endoscopic submucosal dissection of squamous cell carcinoma and airplane transportation. Sci Rep 7:17460

    Article  Google Scholar 

  26. Sato M, Yamato M, Mitani G, Takagaki T, Hamahashi K, Nakamura Y, Ishihara M, Matoba R, Kobayashi H, Okano T, Mochida J, Watanabe M (2019) Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. NPJ Regen Med 4:4

    Article  Google Scholar 

  27. Amagai Y, Karasawa K, Kyungsook J, Matsuda A, Kojima M, Watanabe J, Hibi T, Matsuda H, Tanaka A (2015) Development of a novel carrier optimized for cell sheet transplantation. Biomatter 5:e1027846

    Article  Google Scholar 

  28. Tadakuma K, Tanaka N, Haraguchi Y, Higashimori M, Kaneko M, Shimizu T, Yamato M, Okano T (2013) A device for the rapid transfer/transplantation of living cell sheets with the absence of cell damage. Biomaterials 34:9018–9025

    Article  CAS  Google Scholar 

  29. Arezzo A, Passera R, Scozzari G, Verra M, Morino M (2013) Laparoscopy for rectal cancer reduces short-term mortality and morbidity: results of a systematic review and meta-analysis. Surg Endosc 27:1485–1502

    Article  Google Scholar 

  30. Reza MM, Blasco JA, Andradas E, Cantero R, Mayol J (2006) Systematic review of laparoscopic versus open surgery for colorectal cancer. Br J Surg 93:921–928

    Article  CAS  Google Scholar 

  31. Zeng YK, Yang ZL, Peng JS, Lin HS, Cai L (2012) Laparoscopy-assisted versus open distal gastrectomy for early gastric cancer: evidence from randomized and nonrandomized clinical trials. Ann Surg 256:39–52

    Article  Google Scholar 

  32. Katai H, Mizusawa J, Katayama H, Takagi M, Yoshikawa T, Fukagawa T, Terashima M, Misawa K, Teshima S, Koeda K, Nunobe S, Fukushima N, Yasuda T, Asao Y, Fujiwara Y, Sasako M (2017) Short-term surgical outcomes from a phase III study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage IA/IB gastric cancer: Japan clinical oncology group study JCOG0912. Gastric Cancer 20:699–708

    Article  Google Scholar 

  33. Hiki N, Honda M, Etoh T, Yoshida K, Kodera Y, Kakeji Y, Kumamaru H, Miyata H, Yamashita Y, Inomata M, Konno H, Seto Y, Kitano S (2018) Higher incidence of pancreatic fistula in laparoscopic gastrectomy. Real-world evidence from a nationwide prospective cohort study. Gastric Cancer 21:162–170

    Article  Google Scholar 

  34. Hiki N, Katai H, Mizusawa J, Nakamura K, Nakamori M, Yoshikawa T, Kojima K, Imamoto H, Ninomiya M, Kitano S, Terashima M, Stomach Cancer Study Group of Japan Clinical Oncology G (2018) Long-term outcomes of laparoscopy-assisted distal gastrectomy with suprapancreatic nodal dissection for clinical stage I gastric cancer: a multicenter phase II trial (JCOG0703). Gastric Cancer 21:155–161

    Article  Google Scholar 

  35. Kodera Y, Yoshida K, Kumamaru H, Kakeji Y, Hiki N, Etoh T, Honda M, Miyata H, Yamashita Y, Seto Y, Kitano S, Konno H (2019) Introducing laparoscopic total gastrectomy for gastric cancer in general practice: a retrospective cohort study based on a nationwide registry database in Japan. Gastric Cancer 22:202–213

    Article  Google Scholar 

  36. Maeda M, Yamato M, Kanzaki M, Iseki H, Okano T (2009) Thoracoscopic cell sheet transplantation with a novel device. J Tissue Eng Regen Med 3:255–259

    Article  CAS  Google Scholar 

  37. Osada H, Ho WJ, Yamashita H, Yamazaki K, Ikeda T, Minatoya K, Masumoto H (2020) Novel device prototyping for endoscopic cell sheet transplantation using a three-dimensional printed simulator. Regen Ther 15:258–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the manuscript. SK, YS, AM, and FO developed a prototype of the devices. SY, MK, TI, and YM performed cell sheet transplantation using the devices in pigs and mainly edited the manuscripts. SY and YM contributed equally to the first author. KK supervised the research project. KH and AN participated in the discussion. SE approved the final submission of this manuscript.

Corresponding author

Correspondence to Kengo Kanetaka.

Ethics declarations

Disclosures

Drs. Shun Yamaguchi, Shinichiro Kobayashi, Keiichi Hashiguchi, Yusuke Sakai, Kazuhiko Nakao, and Susumu Eguchi have no conflicts of interest or financial ties to disclose. The laboratory which Drs. Kengo Kanetaka, Yasuhiro Maruya, and Miki Higashi belong to received funding for cooperative research in cell sheet from the TERUMO Company. Mr. Fumiya Oohashi belongs to the TERUMO Company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, S., Kanetaka, K., Maruya, Y. et al. Highly feasible procedure for laparoscopic transplantation of cell sheets under pneumoperitoneum in porcine model. Surg Endosc 36, 3911–3919 (2022). https://doi.org/10.1007/s00464-021-08708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-021-08708-3

Navigation