Skip to main content
Log in

Macrophage profiling in atherosclerosis: understanding the unstable plaque

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas A, Aukrust P, Russell D, Krohg-Sørensen K, Almås T, Bundgaard D, Bjerkeli V, Sagen EL, Michelsen AE, Dahl TB, Holm S, Ueland T, Skjelland M, Halvorsen B (2014) Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS ONE 9:e84935. https://doi.org/10.1371/journal.pone.0084935

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Aiello RJ, Perry BD, Bourassa PA, Robertson A, Weng W, Knight DR, Smith AH, Frederick KS, Kalgutkar A, Gladue RP (2010) CCR2 receptor blockade alters blood monocyte subpopulations but does not affect atherosclerotic lesions in apoE(-/-) mice. Atherosclerosis 208:370–375. https://doi.org/10.1016/j.atherosclerosis.2009.08.017

    Article  CAS  PubMed  Google Scholar 

  3. Alfieri O, Mayosi BM, Park SJ, Sarrafzadegan N, Virmani R (2014) Exploring unknowns in cardiology. Nat Rev Cardiol 11:664–670. https://doi.org/10.1038/nrcardio.2014.123

    Article  PubMed  Google Scholar 

  4. Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA (2014) Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–1559. https://doi.org/10.1161/circulationaha.113.005015

    Article  CAS  PubMed  Google Scholar 

  5. Alsaigh T, Evans D, Frankel D, Torkamani A (2022) Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol 5:1084. https://doi.org/10.1038/s42003-022-04056-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, Virmani R (1999) Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82:269–272. https://doi.org/10.1136/hrt.82.3.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnold KA, Blair JE, Paul JD, Shah AP, Nathan S, Alenghat FJ (2019) Monocyte and macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp Physiol 104:1343–1352. https://doi.org/10.1113/ep087827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett TJ (2020) Macrophages in atherosclerosis regression. Arterioscler Thromb Vasc Biol 40:20–33. https://doi.org/10.1161/atvbaha.119.312802

    Article  CAS  PubMed  Google Scholar 

  9. Bashore AC, Yan H, Xue C, Zhu LY, Kim E, Mawson T, Coronel J, Chung A, Ho S, Ross LS, Kissner M, Passegué E, Bauer RC, Maegdefessel L, Li M, Reilly MP (2023) High-Dimensional Single-Cell Multimodal Landscape of Human Carotid Atherosclerosis. medRxiv Doi:https://doi.org/10.1101/2023.07.13.23292633

  10. Becker LM, Chen SH, Rodor J, de Rooij L, Baker AH, Carmeliet P (2023) Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res 119:6–27. https://doi.org/10.1093/cvr/cvac018

    Article  CAS  PubMed  Google Scholar 

  11. Bekkering S, van den Munckhof I, Nielen T, Lamfers E, Dinarello C, Rutten J, de Graaf J, Joosten LA, Netea MG, Gomes ME, Riksen NP (2016) Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo. Atherosclerosis 254:228–236. https://doi.org/10.1016/j.atherosclerosis.2016.10.019

    Article  CAS  PubMed  Google Scholar 

  12. Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157:2577–2585

    Article  CAS  PubMed  Google Scholar 

  13. Benavente ED, Karnewar S, Buono M, Mili E, Hartman RJG, Kapteijn D, Slenders L, Daniels M, Aherrahrou R, Reinberger T, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, Depuydt MAC, de Winther MPJ, Kuiper J, Bj Rkegren JLM, Erdmann J, Civelek M, Mokry M, Owens GK, Pasterkamp G, den Ruijter HM (2023) Female gene networks are expressed in myofibroblast-like smooth muscle cells in vulnerable atherosclerotic plaques. bioRxiv. doi:https://doi.org/10.1101/2023.02.08.527690

  14. Bengtsson E, Hultman K, Edsfeldt A, Persson A, Nitulescu M, Nilsson J, Gonçalves I, Björkbacka H (2020) CD163+ macrophages are associated with a vulnerable plaque phenotype in human carotid plaques. Sci Rep 10:14362. https://doi.org/10.1038/s41598-020-71110-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866. https://doi.org/10.1161/circresaha.114.302721

    Article  CAS  PubMed  Google Scholar 

  16. Bevan L, Lim ZW, Venkatesh B, Riley PR, Martin P, Richardson RJ (2020) Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish. Cardiovasc Res 116:1357–1371. https://doi.org/10.1093/cvr/cvz221

    Article  CAS  PubMed  Google Scholar 

  17. Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G (2007) PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6:137–143. https://doi.org/10.1016/j.cmet.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  18. Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108. https://doi.org/10.2353/ajpath.2009.080431

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO (2012) Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 110:20–33. https://doi.org/10.1161/circresaha.111.247577

    Article  CAS  PubMed  Google Scholar 

  20. Chan JM, Park SJ, Ng M, Chen WC, Garnell J, Bhakoo K (2022) Predictive mouse model reflects distinct stages of human atheroma in a single carotid artery. Transl Res 240:33–49. https://doi.org/10.1016/j.trsl.2021.08.007

    Article  CAS  PubMed  Google Scholar 

  21. Chen F, Eriksson P, Hansson GK, Herzfeld I, Klein M, Hansson LO, Valen G (2005) Expression of matrix metalloproteinase 9 and its regulators in the unstable coronary atherosclerotic plaque. Int J Mol Med 15:57–65

    CAS  PubMed  Google Scholar 

  22. Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T (2013) The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 22:910–918. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.11.020

    Article  PubMed  Google Scholar 

  23. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, Wolf D, Saliba AE, Zernecke A (2018) Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in murine atherosclerosis. Circ Res 122:1661–1674. https://doi.org/10.1161/circresaha.117.312509

    Article  CAS  PubMed  Google Scholar 

  24. Conklin AC, Nishi H, Schlamp F, Örd T, Õunap K, Kaikkonen MU, Fisher EA, Romanoski CE (2021) Meta-analysis of smooth muscle lineage transcriptomes in atherosclerosis and their relationships to in vitro models. Immunometabolism. https://doi.org/10.20900/immunometab20210022

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Gaetano M, Crean D, Barry M, Belton O (2016) M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis. Front Immunol 7:275. https://doi.org/10.3389/fimmu.2016.00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Winther MPJ, Bäck M, Evans P, Gomez D, Goncalves I, Jørgensen HF, Koenen RR, Lutgens E, Norata GD, Osto E, Dib L, Simons M, Stellos K, Ylä-Herttuala S, Winkels H, Bochaton-Piallat ML, Monaco C (2023) Translational opportunities of single-cell biology in atherosclerosis. Eur Heart J 44:1216–1230. https://doi.org/10.1093/eurheartj/ehac686

    Article  CAS  PubMed  Google Scholar 

  27. DeLeon-Pennell KY, Tian Y, Zhang B, Cates CA, Iyer RP, Cannon P, Shah P, Aiyetan P, Halade GV, Ma Y, Flynn E, Zhang Z, Jin YF, Zhang H, Lindsey ML (2016) CD36 is a matrix metalloproteinase-9 substrate that stimulates neutrophil apoptosis and removal during cardiac remodeling. Circ Cardiovasc Genet 9:14–25. https://doi.org/10.1161/circgenetics.115.001249

    Article  CAS  PubMed  Google Scholar 

  28. Depuydt MAC, Prange KHM, Slenders L, Örd T, Elbersen D, Boltjes A, de Jager SCA, Asselbergs FW, de Borst GJ, Aavik E, Lönnberg T, Lutgens E, Glass CK, den Ruijter HM, Kaikkonen MU, Bot I, Slütter B, van der Laan SW, Yla-Herttuala S, Mokry M, Kuiper J, de Winther MPJ, Pasterkamp G (2020) Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ Res 127:1437–1455. https://doi.org/10.1161/circresaha.120.316770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Depuydt MAC, Schaftenaar FH, Prange KHM, Boltjes A, Hemme E, Delfos L, de Mol J, de Jong MJM, Bernabé Kleijn MNA, Peeters JAHM, Goncalves L, Wezel A, Smeets HJ, de Borst GJ, Foks AC, Pasterkamp G, de Winther MPJ, Kuiper J, Bot I, Slütter B (2023) Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat Cardiovasc Res 2:112–125. https://doi.org/10.1038/s44161-022-00208-4

    Article  Google Scholar 

  30. Domschke G, Gleissner CA (2019) CXCL4-induced macrophages in human atherosclerosis. Cytokine 122:154141. https://doi.org/10.1016/j.cyto.2017.08.021

    Article  CAS  PubMed  Google Scholar 

  31. Doran AC, Ozcan L, Cai B, Zheng Z, Fredman G, Rymond CC, Dorweiler B, Sluimer JC, Hsieh J, Kuriakose G, Tall AR, Tabas I (2017) CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis. J Clin Invest 127:4075–4089. https://doi.org/10.1172/jci94735

    Article  PubMed  PubMed Central  Google Scholar 

  32. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286. https://doi.org/10.1038/nature08296

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Emoto T, Yamamoto H, Yamashita T, Takaya T, Sawada T, Takeda S, Taniguchi M, Sasaki N, Yoshida N, Saito Y, Sivasubramaniyam T, Otake H, Furuyashiki T, Robbins CS, Kawai H, Hirata KI (2022) Single-cell RNA sequencing reveals a distinct immune landscape of myeloid cells in coronary culprit plaques causing acute coronary syndrome. Circulation 145:1434–1436. https://doi.org/10.1161/circulationaha.121.058414

    Article  PubMed  Google Scholar 

  34. Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson J, Makishima M, Reilly MP, Wang N, Tall AR (2022) Myeloid LXR (liver x receptor) deficiency induces inflammatory gene expression in foamy macrophages and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 42:719–731. https://doi.org/10.1161/atvbaha.122.317583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ezhov M, Safarova M, Afanasieva O, Mitroshkin M, Matchin Y, Pokrovsky S (2019) Matrix metalloproteinase 9 as a predictor of coronary atherosclerotic plaque instability in stable coronary heart disease patients with elevated lipoprotein(a) levels. Biomolecules. https://doi.org/10.3390/biom9040129

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    Article  CAS  PubMed  Google Scholar 

  37. Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, Bogunovic D, Gautier EL, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, Bhardwaj N, Garabedian M, Tontonoz P, Fisher EA (2010) LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J Clin Invest 120:4415–4424. https://doi.org/10.1172/jci38911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feig JE, Shang Y, Rotllan N, Vengrenyuk Y, Wu C, Shamir R, Torra IP, Fernandez-Hernando C, Fisher EA, Garabedian MJ (2011) Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS ONE 6:e28534. https://doi.org/10.1371/journal.pone.0028534

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  39. Feinberg H, Park-Snyder S, Kolatkar AR, Heise CT, Taylor ME, Weis WI (2000) Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J Biol Chem 275:21539–21548. https://doi.org/10.1074/jbc.M002366200

    Article  CAS  PubMed  Google Scholar 

  40. Feinstein MJ, Doyle MF, Stein JH, Sitlani CM, Fohner AE, Huber SA, Landay AL, Heckbert SR, Rice K, Kronmal RA, Hedrick C, Manichaikul A, McNamara C, Rich S, Tracy RP, Olson NC, Psaty BM, Delaney JAC (2021) Nonclassical monocytes (CD14dimCD16+) are associated with carotid intima-media thickness progression for men but not women: the multi-ethnic study of atherosclerosis-brief report. Arterioscler Thromb Vasc Biol 41:1810–1817. https://doi.org/10.1161/atvbaha.120.315886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandez DM, Giannarelli C (2022) Immune cell profiling in atherosclerosis: role in research and precision medicine. Nat Rev Cardiol 19:43–58. https://doi.org/10.1038/s41569-021-00589-2

    Article  PubMed  Google Scholar 

  42. Fernandez DM, Rahman AH, Fernandez NF, Chudnovskiy A, Amir ED, Amadori L, Khan NS, Wong CK, Shamailova R, Hill CA, Wang Z, Remark R, Li JR, Pina C, Faries C, Awad AJ, Moss N, Bjorkegren JLM, Kim-Schulze S, Gnjatic S, Ma’ayan A, Mocco J, Faries P, Merad M, Giannarelli C (2019) Single-cell immune landscape of human atherosclerotic plaques. Nat Med 25:1576–1588. https://doi.org/10.1038/s41591-019-0590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30:1282–1292. https://doi.org/10.1161/atvbaha.108.179739

    Article  CAS  PubMed  Google Scholar 

  44. Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R (2012) Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 59:166–177. https://doi.org/10.1016/j.jacc.2011.10.852

    Article  CAS  PubMed  Google Scholar 

  45. Flores AM, Hosseini-Nassab N, Jarr KU, Ye J, Zhu X, Wirka R, Koh AL, Tsantilas P, Wang Y, Nanda V, Kojima Y, Zeng Y, Lotfi M, Sinclair R, Weissman IL, Ingelsson E, Smith BR, Leeper NJ (2020) Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol 15:154–161. https://doi.org/10.1038/s41565-019-0619-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  46. Fujimura N, Xu B, Dalman J, Deng H, Aoyama K, Dalman RL (2015) CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Sci Rep 5:11664. https://doi.org/10.1038/srep11664

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Fuster JJ, MacLauchlan S, Zuriaga MA, Polackal MN, Ostriker AC, Chakraborty R, Wu CL, Sano S, Muralidharan S, Rius C, Vuong J, Jacob S, Muralidhar V, Robertson AA, Cooper MA, Andrés V, Hirschi KK, Martin KA, Walsh K (2017) Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842–847. https://doi.org/10.1126/science.aag1381

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Gao J, Shi L, Gu J, Zhang D, Wang W, Zhu X, Liu J (2021) Difference of immune cell infiltration between stable and unstable carotid artery atherosclerosis. J Cell Mol Med 25:10973–10979. https://doi.org/10.1111/jcmm.17018

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, Bratton DL, Oldenborg PA, Michalak M, Henson PM (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334. https://doi.org/10.1016/j.cell.2005.08.032

    Article  CAS  PubMed  Google Scholar 

  50. Gasbarrino K, Di Iorio D, Daskalopoulou SS (2022) Importance of sex and gender in ischaemic stroke and carotid atherosclerotic disease. Eur Heart J 43:460–473. https://doi.org/10.1093/eurheartj/ehab756

    Article  CAS  PubMed  Google Scholar 

  51. Georgakis MK, Bernhagen J, Heitman LH, Weber C, Dichgans M (2022) Targeting the CCL2-CCR2 axis for atheroprotection. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac094

    Article  PubMed  Google Scholar 

  52. Gerhardt T, Ley K (2015) Monocyte trafficking across the vessel wall. Cardiovasc Res 107:321–330. https://doi.org/10.1093/cvr/cvv147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerhardt T, Seppelt C, Abdelwahed YS, Meteva D, Wolfram C, Stapmanns P, Erbay A, Zanders L, Nelles G, Musfeld J, Sieronski L, Stähli BE, Montone RA, Vergallo R, Haghikia A, Skurk C, Knebel F, Dreger H, Trippel TD, Rai H, Joner M, Klotsche J, Libby P, Crea F, Kränkel N, Landmesser U, Leistner DM (2023) Culprit plaque morphology determines inflammatory risk and clinical outcomes in acute coronary syndrome. Eur Heart J 44:3911–3925. https://doi.org/10.1093/eurheartj/ehad334

    Article  PubMed  Google Scholar 

  54. Gleissner CA, Shaked I, Erbel C, Böckler D, Katus HA, Ley K (2010) CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 106:203–211. https://doi.org/10.1161/circresaha.109.199505

    Article  CAS  PubMed  Google Scholar 

  55. Gordon S (2007) Macrophage heterogeneity and tissue lipids. J Clin Invest 117:89–93. https://doi.org/10.1172/jci30992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grootaert MOJ, Bennett MR (2021) Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res 117:2326–2339. https://doi.org/10.1093/cvr/cvab046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S (2008) Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. Faseb j 22:2629–2638. https://doi.org/10.1096/fj.08-107169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guo J, de Waard V, Van Eck M, Hildebrand RB, van Wanrooij EJ, Kuiper J, Maeda N, Benson GM, Groot PH, Van Berkel TJ (2005) Repopulation of apolipoprotein E knockout mice with CCR2-deficient bone marrow progenitor cells does not inhibit ongoing atherosclerotic lesion development. Arterioscler Thromb Vasc Biol 25:1014–1019. https://doi.org/10.1161/01.Atv.0000163181.40896.42

    Article  CAS  PubMed  Google Scholar 

  59. Guo L, Akahori H, Harari E, Smith SL, Polavarapu R, Karmali V, Otsuka F, Gannon RL, Braumann RE, Dickinson MH, Gupta A, Jenkins AL, Lipinski MJ, Kim J, Chhour P, de Vries PS, Jinnouchi H, Kutys R, Mori H, Kutyna MD, Torii S, Sakamoto A, Choi CU, Cheng Q, Grove ML, Sawan MA, Zhang Y, Cao Y, Kolodgie FD, Cormode DP, Arking DE, Boerwinkle E, Morrison AC, Erdmann J, Sotoodehnia N, Virmani R, Finn AV (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106–1124. https://doi.org/10.1172/jci93025

    Article  PubMed  PubMed Central  Google Scholar 

  60. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wickline SA, Parks WC (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci U S A 93:9748–9753. https://doi.org/10.1073/pnas.93.18.9748

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  61. He H, Han Q, Wang S, Long M, Zhang M, Li Y, Zhang Y, Gu N (2023) Design of a multifunctional nanozyme for resolving the proinflammatory plaque microenvironment and attenuating atherosclerosis. ACS Nano 17:14555–14571. https://doi.org/10.1021/acsnano.3c01420

    Article  CAS  PubMed  Google Scholar 

  62. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur MC, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. https://doi.org/10.1038/nm.3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Heinrich F, Lehmbecker A, Raddatz BB, Kegler K, Tipold A, Stein VM, Kalkuhl A, Deschl U, Baumgärtner W, Ulrich R, Spitzbarth I (2017) Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro. PLoS ONE 12:e0183572. https://doi.org/10.1371/journal.pone.0183572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herisson F, Heymann MF, Chétiveaux M, Charrier C, Battaglia S, Pilet P, Rouillon T, Krempf M, Lemarchand P, Heymann D, Gouëffic Y (2011) Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 216:348–354. https://doi.org/10.1016/j.atherosclerosis.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  65. Hickman E, Smyth T, Cobos-Uribe C, Immormino R, Rebuli ME, Moran T, Alexis NE, Jaspers I (2023) Expanded characterization of in vitro polarized M0, M1, and M2 human monocyte-derived macrophages: bioenergetic and secreted mediator profiles. PLoS ONE 18:e0279037. https://doi.org/10.1371/journal.pone.0279037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hofer TP, van de Loosdrecht AA, Stahl-Hennig C, Cassatella MA, Ziegler-Heitbrock L (2019) 6-Sulfo LacNAc (Slan) as a marker for non-classical monocytes. Front Immunol 10:2052. https://doi.org/10.3389/fimmu.2019.02052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Horstmann H, Lindau A, Hansen S, Stachon P, Hilgendorf I, Bode C, Zirlik A, Wolf D (2020) Atlas of the immune cell repertoire in human atherosclerotic plaques characterized by single cell RNA-sequencing and multi-color flow cytometry. Eur Heart J. https://doi.org/10.1093/ehjci/ehaa946.2353

    Article  Google Scholar 

  68. Hu G, Su Y, Kang BH, Fan Z, Dong T, Brown DR, Cheah J, Wittrup KD, Chen J (2021) High-throughput phenotypic screen and transcriptional analysis identify new compounds and targets for macrophage reprogramming. Nat Commun 12:773. https://doi.org/10.1038/s41467-021-21066-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  69. Hu J, Schroeder A, Coleman K, Chen C, Auerbach BJ, Li M (2021) Statistical and machine learning methods for spatially resolved transcriptomics with histology. Comput Struct Biotechnol J 19:3829–3841. https://doi.org/10.1016/j.csbj.2021.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iemolo F, Martiniuk A, Steinman DA, Spence JD (2004) Sex differences in carotid plaque and stenosis. Stroke 35:477–481. https://doi.org/10.1161/01.Str.0000110981.96204.64

    Article  PubMed  Google Scholar 

  71. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H, Kato K, Yonetsu T, Vergallo R, Hu S, Tian J, Lee H, Park SJ, Jang YS, Raffel OC, Mizuno K, Uemura S, Itoh T, Kakuta T, Choi SY, Dauerman HL, Prasad A, Toma C, McNulty I, Zhang S, Yu B, Fuster V, Narula J, Virmani R, Jang IK (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758. https://doi.org/10.1016/j.jacc.2013.05.071

    Article  PubMed  Google Scholar 

  72. Jung H, Mithal DS, Park JE, Miller RJ (2015) Localized CCR2 activation in the bone marrow niche mobilizes monocytes by desensitizing CXCR4. PLoS ONE 10:e0128387. https://doi.org/10.1371/journal.pone.0128387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jung SH, Hwang BH, Shin S, Park EH, Park SH, Kim CW, Kim E, Choo E, Choi IJ, Swirski FK, Chang K, Chung YJ (2022) Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2(hi) macrophages in infarcted hearts. Nat Commun 13:4580. https://doi.org/10.1038/s41467-022-32284-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. https://doi.org/10.1161/circresaha.109.215715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, Yoon WK, Prat A, Seidah NG, Choi J, Lee SP, Yoon SH, Nam JW, Seong JK, Oh GT, Randolph GJ, Artyomov MN, Cheong C, Choi JH (2018) Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 123:1127–1142. https://doi.org/10.1161/circresaha.118.312804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleinbongard P, Heusch G (2022) A fresh look at coronary microembolization. Nat Rev Cardiol 19:265–280. https://doi.org/10.1038/s41569-021-00632-2

    Article  PubMed  Google Scholar 

  77. Koelwyn GJ, Corr EM, Erbay E, Moore KJ (2018) Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol 19:526–537. https://doi.org/10.1038/s41590-018-0113-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kojima Y, Volkmer JP, McKenna K, Civelek M, Lusis AJ, Miller CL, Direnzo D, Nanda V, Ye J, Connolly AJ, Schadt EE, Quertermous T, Betancur P, Maegdefessel L, Matic LP, Hedin U, Weissman IL, Leeper NJ (2016) CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature 536:86–90. https://doi.org/10.1038/nature18935

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  79. Kratofil RM, Kubes P, Deniset JF (2017) Monocyte conversion during inflammation and injury. Arterioscler Thromb Vasc Biol 37:35–42. https://doi.org/10.1161/atvbaha.116.308198

    Article  CAS  PubMed  Google Scholar 

  80. Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, Hannani MT, Tanevski J, Wünnemann F, Nagai JS, Halder M, Schumacher D, Menzel S, Schäfer G, Hoeft K, Cheng M, Ziegler S, Zhang X, Peisker F, Kaesler N, Saritas T, Xu Y, Kassner A, Gummert J, Morshuis M, Amrute J, Veltrop RJA, Boor P, Klingel K, Van Laake LW, Vink A, Hoogenboezem RM, Bindels EMJ, Schurgers L, Sattler S, Schapiro D, Schneider RK, Lavine K, Milting H, Costa IG, Saez-Rodriguez J, Kramann R (2022) Spatial multi-omic map of human myocardial infarction. Nature 608:766–777. https://doi.org/10.1038/s41586-022-05060-x

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Landis RC, Philippidis P, Domin J, Boyle JJ, Haskard DO (2013) Haptoglobin genotype-dependent anti-inflammatory signaling in CD163(+) macrophages. Int J Inflam 2013:980327. https://doi.org/10.1155/2013/980327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lauber K, Bohn E, Kröber SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S, Xu Y, Autenrieth IB, Schulze-Osthoff K, Belka C, Stuhler G, Wesselborg S (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730. https://doi.org/10.1016/s0092-8674(03)00422-7

    Article  CAS  PubMed  Google Scholar 

  83. Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann HC, Fröhlich G, Rauch-Kröhnert U, Flores E, Riedel M, Sieronski L, Kia S, Strässler E, Haghikia A, Dirks F, Steiner JK, Mueller DN, Volk HD, Klotsche J, Joner M, Libby P, Landmesser U (2020) Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J 41:3549–3560. https://doi.org/10.1093/eurheartj/ehaa703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010. https://doi.org/10.1038/nbt.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. https://doi.org/10.1084/jem.20111009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Libby P (2021) The changing landscape of atherosclerosis. Nature 592:524–533. https://doi.org/10.1038/s41586-021-03392-8

    Article  CAS  PubMed  ADS  Google Scholar 

  87. Libby P (2021) Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc Res 117:2525–2536. https://doi.org/10.1093/cvr/cvab303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Libby P, Pasterkamp G, Crea F, Jang IK (2019) Reassessing the mechanisms of acute coronary syndromes. Circ Res 124:150–160. https://doi.org/10.1161/circresaha.118.311098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lin P, Ji HH, Li YJ, Guo SD (2021) Macrophage plasticity and atherosclerosis therapy. Front Mol Biosci 8:679797. https://doi.org/10.3389/fmolb.2021.679797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu D, Paczkowski P, Mackay S, Ng C, Zhou J (2020) Single-cell multiplexed proteomics on the isolight resolves cellular functional heterogeneity to reveal clinical responses of cancer patients to immunotherapies. Methods Mol Biol 2055:413–431. https://doi.org/10.1007/978-1-4939-9773-2_19

    Article  CAS  PubMed  Google Scholar 

  91. Llodrá J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci U S A 101:11779–11784. https://doi.org/10.1073/pnas.0403259101

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  92. Lu Y, Chen JJ, Mu L, Xue Q, Wu Y, Wu PH, Li J, Vortmeyer AO, Miller-Jensen K, Wirtz D, Fan R (2013) High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal Chem 85:2548–2556. https://doi.org/10.1021/ac400082e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L, el Amir AD, Pe’er D, Miller-Jensen K, Fan R (2015) Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 112:E607-615. https://doi.org/10.1073/pnas.1416756112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meeuwsen JAL, de Vries JJ, van Duijvenvoorde A, van der Velden S, van der Laan SW, van Koeverden ID, van de Weg SM, de Borst GJ, de Winther MPJ, Kuiper J, Pasterkamp G, Hoefer IE, de Jager SCA (2019) Circulating CD14(+)CD16(-) classical monocytes do not associate with a vulnerable plaque phenotype, and do not predict secondary events in severe atherosclerotic patients. J Mol Cell Cardiol 127:260–269. https://doi.org/10.1016/j.yjmcc.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  95. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164:6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166

    Article  CAS  PubMed  Google Scholar 

  96. Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. https://doi.org/10.1038/nri3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355. https://doi.org/10.1016/j.cell.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, Perna F, Pandey S, Madzo J, Song C, Dai Q, He C, Ibrahim S, Beran M, Zavadil J, Nimer SD, Melnick A, Godley LA, Aifantis I, Levine RL (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11–24. https://doi.org/10.1016/j.ccr.2011.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mulder R, Banete A, Basta S (2014) Spleen-derived macrophages are readily polarized into classically activated (M1) or alternatively activated (M2) states. Immunobiology 219:737–745. https://doi.org/10.1016/j.imbio.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  100. Murphy AJ, Akhtari M, Tolani S, Pagler T, Bijl N, Kuo CL, Wang M, Sanson M, Abramowicz S, Welch C, Bochem AE, Kuivenhoven JA, Yvan-Charvet L, Tall AR (2011) ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest 121:4138–4149. https://doi.org/10.1172/jci57559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Murray PJ (2017) Macrophage polarization. Annu Rev Physiol 79:541–566. https://doi.org/10.1146/annurev-physiol-022516-034339

    Article  CAS  PubMed  Google Scholar 

  102. Nahrendorf M, Swirski FK (2016) Abandoning M1/M2 for a network model of macrophage function. Circ Res 119:414–417. https://doi.org/10.1161/circresaha.116.309194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakajima A, Sugiyama T, Araki M, Seegers LM, Dey D, McNulty I, Lee H, Yonetsu T, Yasui Y, Teng Y, Nagamine T, Nakamura S, Achenbach S, Kakuta T, Jang IK (2022) Plaque rupture, compared with plaque erosion, is associated with a higher level of pancoronary inflammation. JACC Cardiovasc Imaging 15:828–839. https://doi.org/10.1016/j.jcmg.2021.10.014

    Article  PubMed  Google Scholar 

  104. Natarajan P, Jaiswal S, Kathiresan S (2018) Clonal hematopoiesis: somatic mutations in blood cells and atherosclerosis. Circ Genom Precis Med 11:e001926. https://doi.org/10.1161/circgen.118.001926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ni W, Han EX, Cyr M, Mackay S, Zhou J (2023) Applying single-cell highly multiplexed secretome proteomics to characterize immunotherapeutic products and predict clinical responses. Proteomics. https://doi.org/10.1002/pmic.202200242

    Article  PubMed  Google Scholar 

  106. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61:404–410. https://doi.org/10.1016/j.jacc.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  107. Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, The SHK, Xu XF, Ireland MA, Lenderink T, Latchem D, Hoogslag P, Jerzewski A, Nierop P, Whelan A, Hendriks R, Swart H, Schaap J, Kuijper AFM, van Hessen MWJ, Saklani P, Tan I, Thompson AG, Morton A, Judkins C, Bax WA, Dirksen M, Alings M, Hankey GJ, Budgeon CA, Tijssen JGP, Cornel JH, Thompson PL (2020) Colchicine in patients with chronic coronary disease. N Engl J Med 383:1838–1847. https://doi.org/10.1056/NEJMoa2021372

    Article  CAS  PubMed  Google Scholar 

  108. Oh ES, Na M, Rogers CJ (2021) The association between monocyte subsets and cardiometabolic disorders/cardiovascular disease: a systematic review and meta-analysis. Front Cardiovasc Med 8:640124. https://doi.org/10.3389/fcvm.2021.640124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Olejarz W, Łacheta D, Kubiak-Tomaszewska G (2020) Matrix Metalloproteinases as biomarkers of atherosclerotic plaque instability. Int J Mol Sci. https://doi.org/10.3390/ijms21113946

    Article  PubMed  PubMed Central  Google Scholar 

  110. Osorio D, Cai JJ (2021) Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control. Bioinformatics 37:963–967. https://doi.org/10.1093/bioinformatics/btaa751

    Article  CAS  PubMed  Google Scholar 

  111. Park SY, Kim IS (2017) Engulfment signals and the phagocytic machinery for apoptotic cell clearance. Exp Mol Med 49:e331. https://doi.org/10.1038/emm.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Partida RA, Libby P, Crea F, Jang IK (2018) Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J 39:2070–2076. https://doi.org/10.1093/eurheartj/ehx786

    Article  PubMed  PubMed Central  Google Scholar 

  113. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S (2017) The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 214:1913–1923. https://doi.org/10.1084/jem.20170355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Patterson MT, Firulyova M, Xu Y, Bishop C, Zhu A, Schrank PR, Ronayne CE, Fredrickson G, Kennedy AE, Acharya N, Revelo X, Stromnes I, Bold TD, Zaitsev K, Williams JW (2022) Trem2 promotes foamy macrophage lipid uptake and survival in atherosclerosis. bioRxiv:2022.2011.2028.518255. Doi:https://doi.org/10.1101/2022.11.28.518255

  115. Patterson MT, Xu Y, Hillman H, Osinski V, Schrank PR, Kennedy AE, Zhu A, Tollison S, Shekhar S, Stromnes IM, Tassi I, Wu D, Binstadt BA, Williams JW (2023) Trem2 agonist reprograms foamy macrophages to promote atherosclerotic plaque stability. bioRxiv:2023.2009.2021.558810. Doi:https://doi.org/10.1101/2023.09.21.558810

  116. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38:633–643. https://doi.org/10.1016/j.immuni.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Peng Z, Shu B, Zhang Y, Wang M (2019) Endothelial response to pathophysiological stress. Arterioscler Thromb Vasc Biol 39:e233–e243. https://doi.org/10.1161/atvbaha.119.312580

    Article  CAS  PubMed  Google Scholar 

  118. Peter C, Waibel M, Keppeler H, Lehmann R, Xu G, Halama A, Adamski J, Schulze-Osthoff K, Wesselborg S, Lauber K (2012) Release of lysophospholipid “find-me” signals during apoptosis requires the ATP-binding cassette transporter A1. Autoimmunity 45:568–573. https://doi.org/10.3109/08916934.2012.719947

    Article  CAS  PubMed  Google Scholar 

  119. Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber K (2008) Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem 283:5296–5305. https://doi.org/10.1074/jbc.M706586200

    Article  CAS  PubMed  Google Scholar 

  120. Qian J, Gao Y, Lai Y, Ye Z, Yao Y, Ding K, Tong J, Lin H, Zhu G, Yu Y, Ding H, Yuan D, Chu J, Chen F, Liu X (2022) Single-cell RNA sequencing of peripheral blood mononuclear cells from acute myocardial infarction. Front Immunol 13:908815. https://doi.org/10.3389/fimmu.2022.908815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Quintar A, McArdle S, Wolf D, Marki A, Ehinger E, Vassallo M, Miller J, Mikulski Z, Ley K, Buscher K (2017) Endothelial protective monocyte patrolling in large arteries intensified by western diet and atherosclerosis. Circ Res 120:1789–1799. https://doi.org/10.1161/circresaha.117.310739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rahman K, Vengrenyuk Y, Ramsey SA, Vila NR, Girgis NM, Liu J, Gusarova V, Gromada J, Weinstock A, Moore KJ, Loke P, Fisher EA (2017) Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J Clin Invest 127:2904–2915. https://doi.org/10.1172/jci75005

    Article  PubMed  PubMed Central  Google Scholar 

  123. Redgrave JN, Lovett JK, Gallagher PJ, Rothwell PM (2006) Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study. Circulation 113:2320–2328. https://doi.org/10.1161/circulationaha.105.589044

    Article  CAS  PubMed  Google Scholar 

  124. Revêchon G, Merino LG, Machtel P, Eriksson M (2023) Somatic mutations in vascular wall function and age-associated disease. Eur Heart J. https://doi.org/10.1093/eurheartj/ehad454

    Article  PubMed  PubMed Central  Google Scholar 

  125. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  126. Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, Gorbatov R, Etzrodt M, Weber GF, Ueno T, van Rooijen N, Mulligan-Kehoe MJ, Libby P, Nahrendorf M, Pittet MJ, Weissleder R, Swirski FK (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125:364–374. https://doi.org/10.1161/circulationaha.111.061986

    Article  PubMed  Google Scholar 

  127. Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172. https://doi.org/10.1038/nm.3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rocchiccioli S, Pelosi G, Rosini S, Marconi M, Viglione F, Citti L, Ferrari M, Trivella MG, Cecchettini A (2013) Secreted proteins from carotid endarterectomy: an untargeted approach to disclose molecular clues of plaque progression. J Transl Med 11:260. https://doi.org/10.1186/1479-5876-11-260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Große-Dunker G, Heisel I, Hornof F, Jeken J, Rebling NM, Ulrich C, Scheller B, Böhm M, Fliser D, Heine GH (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520. https://doi.org/10.1016/j.jacc.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  130. SahBandar IN, Ndhlovu LC, Saiki K, Kohorn LB, Peterson MM, D’Antoni ML, Shiramizu B, Shikuma CM, Chow DC (2020) Relationship between circulating inflammatory monocytes and cardiovascular disease measures of carotid intimal thickness. J Atheroscler Thromb 27:441–448. https://doi.org/10.5551/jat.49791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schlegel M, Sharma M, Brown EJ, Newman AAC, Cyr Y, Afonso MS, Corr EM, Koelwyn GJ, van Solingen C, Guzman J, Farhat R, Nikain CA, Shanley LC, Peled D, Schmidt AM, Fisher EA, Moore KJ (2021) Silencing myeloid netrin-1 induces inflammation resolution and plaque regression. Circ Res 129:530–546. https://doi.org/10.1161/circresaha.121.319313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, Virmani R (2009) Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J Am Coll Cardiol 54:2167–2173. https://doi.org/10.1016/j.jacc.2009.07.042

    Article  PubMed  Google Scholar 

  133. Seegers LM, Araki M, Nakajima A, Yonetsu T, Minami Y, Ako J, Soeda T, Kurihara O, Higuma T, Kimura S, Adriaenssens T, Nef HM, Lee H, McNulty I, Sugiyama T, Kakuta T, Jang IK (2022) Sex differences in culprit plaque characteristics among different age groups in patients with acute coronary syndromes. Circ Cardiovasc Interv 15:e011612. https://doi.org/10.1161/circinterventions.121.011612

    Article  PubMed  Google Scholar 

  134. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A (2018) Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 233:6425–6440. https://doi.org/10.1002/jcp.26429

    Article  CAS  PubMed  Google Scholar 

  135. Sigala F, Oikonomou E, Antonopoulos AS, Galyfos G, Tousoulis D (2018) Coronary versus carotid artery plaques. Similarities and differences regarding biomarkers morphology and prognosis. Curr Opin Pharmacol 39:9–18. https://doi.org/10.1016/j.coph.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  136. Slenders L, Tessels DE, van der Laan SW, Pasterkamp G, Mokry M (2022) The applications of single-cell RNA sequencing in atherosclerotic disease. Front Cardiovasc Med 9:826103. https://doi.org/10.3389/fcvm.2022.826103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Slysz J, Sinha A, DeBerge M, Singh S, Avgousti H, Lee I, Glinton K, Nagasaka R, Dalal PJ, Alexandria SJ, Wai CM, Tellez R, Vescovo M, Sunderraj A, Wang X, Schipma MJ, Sisk RK, Gulati R, Vallejo J, Saigusa R, Lloyd-Jones DM, Lomasney J, Weinberg SE, Ho KJ, Ley K, Giannarelli C, Thorp EB, Feinstein MJ (2023) Single-cell profiling reveals comparatively inflammatory polarization of human carotid versus femoral plaque leukocytes. JCI Insight. https://doi.org/10.1172/jci.insight.171359

    Article  PubMed  PubMed Central  Google Scholar 

  138. Spagnoli LG, Mauriello A, Sangiorgi G, Fratoni S, Bonanno E, Schwartz RS, Piepgras DG, Pistolese R, Ippoliti A, Holmes DR Jr (2004) Extracranial thrombotically active carotid plaque as a risk factor for ischemic stroke. JAMA 292:1845–1852. https://doi.org/10.1001/jama.292.15.1845

    Article  CAS  PubMed  Google Scholar 

  139. Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol 18:666–682. https://doi.org/10.1038/s41569-021-00552-1

    Article  PubMed  PubMed Central  Google Scholar 

  140. Steenman M, Espitia O, Maurel B, Guyomarch B, Heymann MF, Pistorius MA, Ory B, Heymann D, Houlgatte R, Gouëffic Y, Quillard T (2018) Identification of genomic differences among peripheral arterial beds in atherosclerotic and healthy arteries. Sci Rep 8:3940. https://doi.org/10.1038/s41598-018-22292-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  141. Stöger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP (2012) Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 225:461–468. https://doi.org/10.1016/j.atherosclerosis.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  142. Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA (2017) Single-cell transcriptomics to explore the immune system in health and disease. Science 358:58–63. https://doi.org/10.1126/science.aan6828

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  143. Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Lee H, Isobe M, Libby P, Jang IK (2018) Nonculprit plaque characteristics in patients with acute coronary syndrome caused by plaque erosion vs plaque rupture: a 3-vessel optical coherence tomography study. JAMA Cardiol 3:207–214. https://doi.org/10.1001/jamacardio.2017.5234

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sukhova GK, Schönbeck U, Rabkin E, Schoen FJ, Poole AR, Billinghurst RC, Libby P (1999) Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99:2503–2509. https://doi.org/10.1161/01.cir.99.19.2503

    Article  CAS  PubMed  Google Scholar 

  145. Sun J, Singh P, Shami A, Kluza E, Pan M, Djordjevic D, Michaelsen NB, Kennbäck C, van der Wel NN, Orho-Melander M, Nilsson J, Formentini I, Conde-Knape K, Lutgens E, Edsfeldt A, Gonçalves I (2023) Spatial transcriptional mapping reveals site-specific pathways underlying human atherosclerotic plaque rupture. J Am Coll Cardiol 81:2213–2227. https://doi.org/10.1016/j.jacc.2023.04.008

    Article  CAS  PubMed  Google Scholar 

  146. Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10:36–46. https://doi.org/10.1038/nri2675

    Article  CAS  PubMed  Google Scholar 

  147. Tabas I, Bornfeldt KE (2016) Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 118:653–667. https://doi.org/10.1161/circresaha.115.306256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. https://doi.org/10.1172/jci28549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Tahir S, Steffens S (2021) Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol 320:C761-c770. https://doi.org/10.1152/ajpcell.00326.2020

    Article  CAS  PubMed  Google Scholar 

  150. Tan C, Liu Y, Li W, Deng F, Liu X, Wang X, Gui Y, Qin L, Hu C, Chen L (2014) Associations of matrix metalloproteinase-9 and monocyte chemoattractant protein-1 concentrations with carotid atherosclerosis, based on measurements of plaque and intima-media thickness. Atherosclerosis 232:199–203. https://doi.org/10.1016/j.atherosclerosis.2013.11.040

    Article  CAS  PubMed  Google Scholar 

  151. Tao W, Yurdagul A Jr, Kong N, Li W, Wang X, Doran AC, Feng C, Wang J, Islam MA, Farokhzad OC, Tabas I, Shi J (2020) siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay1063

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, Berry C, López-Sendón J, Ostadal P, Koenig W, Angoulvant D, Grégoire JC, Lavoie MA, Dubé MP, Rhainds D, Provencher M, Blondeau L, Orfanos A, L’Allier PL, Guertin MC, Roubille F (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381:2497–2505. https://doi.org/10.1056/NEJMoa1912388

    Article  CAS  PubMed  Google Scholar 

  153. Tolani S, Pagler TA, Murphy AJ, Bochem AE, Abramowicz S, Welch C, Nagareddy PR, Holleran S, Hovingh GK, Kuivenhoven JA, Tall AR (2013) Hypercholesterolemia and reduced HDL-C promote hematopoietic stem cell proliferation and monocytosis: studies in mice and FH children. Atherosclerosis 229:79–85. https://doi.org/10.1016/j.atherosclerosis.2013.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tomas L, Edsfeldt A, Mollet IG, Perisic Matic L, Prehn C, Adamski J, Paulsson-Berne G, Hedin U, Nilsson J, Bengtsson E, Gonçalves I, Björkbacka H (2018) Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur Heart J 39:2301–2310. https://doi.org/10.1093/eurheartj/ehy124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ, Fisher EA (2006) Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A 103:3781–3786. https://doi.org/10.1073/pnas.0511043103

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ, Dumitriu IE, Melville L, Melrose LA, Ogden CA, Nibbs R, Graham G, Combadiere C, Gregory CD (2008) CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:5026–5036. https://doi.org/10.1182/blood-2008-06-162404

    Article  CAS  PubMed  Google Scholar 

  157. Turu MM, Krupinski J, Catena E, Rosell A, Montaner J, Rubio F, Alvarez-Sabin J, Cairols M, Badimon L (2006) Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound. Atherosclerosis 187:161–169. https://doi.org/10.1016/j.atherosclerosis.2005.08.039

    Article  CAS  PubMed  Google Scholar 

  158. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA (2022) The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol 80:2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005

    Article  PubMed  Google Scholar 

  159. Vahid MR, Brown EL, Steen CB, Zhang W, Jeon HS, Kang M, Gentles AJ, Newman AM (2023) High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nat Biotechnol. https://doi.org/10.1038/s41587-023-01697-9

    Article  PubMed  PubMed Central  Google Scholar 

  160. van Dam-Nolen DHK, van Egmond NCM, Koudstaal PJ, van der Lugt A, Bos D (2023) Sex differences in carotid atherosclerosis: a systematic review and meta-analysis. Stroke 54:315–326. https://doi.org/10.1161/strokeaha.122.041046

    Article  PubMed  Google Scholar 

  161. Van de Sande B, Lee JS, Mutasa-Gottgens E, Naughton B, Bacon W, Manning J, Wang Y, Pollard J, Mendez M, Hill J, Kumar N, Cao X, Chen X, Khaladkar M, Wen J, Leach A, Ferran E (2023) Applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 22:496–520. https://doi.org/10.1038/s41573-023-00688-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J, Baron CS, Robin C, van Oudenaarden A (2017) Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods 14:935–936. https://doi.org/10.1038/nmeth.4437

    Article  CAS  PubMed  Google Scholar 

  163. van der Laan AM, Ter Horst EN, Delewi R, Begieneman MP, Krijnen PA, Hirsch A, Lavaei M, Nahrendorf M, Horrevoets AJ, Niessen HW, Piek JJ (2014) Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J 35:376–385. https://doi.org/10.1093/eurheartj/eht331

    Article  CAS  PubMed  Google Scholar 

  164. van Gils JM, Derby MC, Fernandes LR, Ramkhelawon B, Ray TD, Rayner KJ, Parathath S, Distel E, Feig JL, Alvarez-Leite JI, Rayner AJ, McDonald TO, O’Brien KD, Stuart LM, Fisher EA, Lacy-Hulbert A, Moore KJ (2012) The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol 13:136–143. https://doi.org/10.1038/ni.2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, Vandamme N, De Schepper S, Van Isterdael G, Scott CL, Aerts J, Berx G, Boeckxstaens GE, Vandenbroucke RE, Vereecke L, Moechars D, Guilliams M, Van Ginderachter JA, Saeys Y, Movahedi K (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035. https://doi.org/10.1038/s41593-019-0393-4

    Article  CAS  PubMed  Google Scholar 

  166. Virmani R, Finn AV, Kolodgie FD (2009) Carotid plaque stabilization and progression after stroke or TIA. Arterioscler Thromb Vasc Biol 29:3–6. https://doi.org/10.1161/atvbaha.108.177659

    Article  CAS  PubMed  Google Scholar 

  167. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J (2019) M2b macrophage polarization and its roles in diseases. J Leukoc Biol 106:345–358. https://doi.org/10.1002/jlb.3ru1018-378rr

    Article  CAS  PubMed  Google Scholar 

  168. Wang P, Zheng L, Qiao M, Zhao T, Zhang R, Dong H (2022) A single-cell atlas of the atherosclerotic plaque in the femoral artery and the heterogeneity in macrophage subtypes between carotid and femoral atherosclerosis. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd9120465

    Article  PubMed  PubMed Central  Google Scholar 

  169. Waring OJ, Skenteris NT, Biessen EAL, Donners M (2022) Two-faced Janus: the dual role of macrophages in atherosclerotic calcification. Cardiovasc Res 118:2768–2777. https://doi.org/10.1093/cvr/cvab301

    Article  CAS  PubMed  Google Scholar 

  170. Wheeler KC, Jena MK, Pradhan BS, Nayak N, Das S, Hsu CD, Wheeler DS, Chen K, Nayak NR (2018) VEGF may contribute to macrophage recruitment and M2 polarization in the decidua. PLoS ONE 13:e0191040. https://doi.org/10.1371/journal.pone.0191040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. White SJ, Newby AC, Johnson TW (2016) Endothelial erosion of plaques as a substrate for coronary thrombosis. Thromb Haemost 115:509–519. https://doi.org/10.1160/th15-09-0765

    Article  PubMed  Google Scholar 

  172. Willemsen L, de Winther MP (2020) Macrophage subsets in atherosclerosis as defined by single-cell technologies. J Pathol 250:705–714. https://doi.org/10.1002/path.5392

    Article  PubMed  PubMed Central  Google Scholar 

  173. Williams H, Cassorla G, Pertsoulis N, Patel V, Vicaretti M, Marmash N, Hitos K, Fletcher JP, Medbury HJ (2017) Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease. Int Angiol 36:145–155. https://doi.org/10.23736/s0392-9590.16.03661-0

    Article  PubMed  Google Scholar 

  174. Williams H, Johnson JL, Jackson CL, White SJ, George SJ (2010) MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 87:137–146. https://doi.org/10.1093/cvr/cvq042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Winkels H, Ehinger E, Vassallo M, Buscher K, Dinh HQ, Kobiyama K, Hamers AAJ, Cochain C, Vafadarnejad E, Saliba AE, Zernecke A, Pramod AB, Ghosh AK, Anto Michel N, Hoppe N, Hilgendorf I, Zirlik A, Hedrick CC, Ley K, Wolf D (2018) Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ Res 122:1675–1688. https://doi.org/10.1161/circresaha.117.312513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Xu X, Hua X, Mo H, Hu S, Song J (2023) Single-cell RNA sequencing to identify cellular heterogeneity and targets in cardiovascular diseases: from bench to bedside. Basic Res Cardiol 118:7. https://doi.org/10.1007/s00395-022-00972-1

    Article  PubMed  Google Scholar 

  177. Yahagi K, Davis HR, Arbustini E, Virmani R (2015) Sex differences in coronary artery disease: pathological observations. Atherosclerosis 239:260–267. https://doi.org/10.1016/j.atherosclerosis.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  178. Yatera K, Hsieh J, Hogg JC, Tranfield E, Suzuki H, Shih CH, Behzad AR, Vincent R, van Eeden SF (2008) Particulate matter air pollution exposure promotes recruitment of monocytes into atherosclerotic plaques. Am J Physiol Heart Circ Physiol 294:H944-953. https://doi.org/10.1152/ajpheart.00406.2007

    Article  CAS  PubMed  Google Scholar 

  179. Yuan XM, Ward LJ, Forssell C, Siraj N, Li W (2018) Carotid atheroma from men has significantly higher levels of inflammation and iron metabolism enabled by macrophages. Stroke 49:419–425. https://doi.org/10.1161/strokeaha.117.018724

    Article  PubMed  Google Scholar 

  180. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH (2011) SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood 118:e50-61. https://doi.org/10.1182/blood-2011-01-326827

    Article  CAS  PubMed  Google Scholar 

  181. Zhang K, Wang Y, Chen S, Mao J, Jin Y, Ye H, Zhang Y, Liu X, Gong C, Cheng X, Huang X, Hoeft A, Chen Q, Li X, Fang X (2023) TREM2(hi) resident macrophages protect the septic heart by maintaining cardiomyocyte homeostasis. Nat Metab 5:129–146. https://doi.org/10.1038/s42255-022-00715-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang W, Zhao J, Wang R, Jiang M, Ye Q, Smith AD, Chen J, Shi Y (2019) Macrophages reprogram after ischemic stroke and promote efferocytosis and inflammation resolution in the mouse brain. CNS Neurosci Ther 25:1329–1342. https://doi.org/10.1111/cns.13256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zhao TX, Sriranjan RS, Tuong ZK, Lu Y, Sage AP, Nus M, Hubsch A, Kaloyirou F, Vamvaka E, Helmy J, Kostapanos M, Jalaludeen N, Klatzmann D, Tedgui A, Rudd JHF, Horton SJ, Huntly BJP, Hoole SP, Bond SP, Clatworthy MR, Cheriyan J, Mallat Z (2022) Regulatory T-cell response to low-dose interleukin-2 in ischemic heart disease. NEJM Evid. https://doi.org/10.1056/EVIDoa2100009

    Article  PubMed  PubMed Central  Google Scholar 

  184. Zhu SN, Chen M, Jongstra-Bilen J, Cybulsky MI (2009) GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. J Exp Med 206:2141–2149. https://doi.org/10.1084/jem.20090866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520. https://doi.org/10.4049/jimmunol.1200662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All figures in this manuscript were created with BioRender.com.

Funding

This work was supported by the Canadian Institutes of Health Research [PJT-148966, SVB- 145589]; and the Heart & Stroke Foundation of Canada [G-17–0018755]. SSD is a Senior Clinician-Scientist supported by a Fonds de Recherche du Québec-Santé Senior Salary Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stella S. Daskalopoulou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gianopoulos, I., Daskalopoulou, S.S. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 119, 35–56 (2024). https://doi.org/10.1007/s00395-023-01023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-023-01023-z

Keywords

Navigation