Skip to main content

Advertisement

Log in

Cardiac performance correlates of relative heart ventricle mass in amphibians

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This study used an in situ heart preparation to analyze the power output and stroke work of spontaneously beating hearts of four anurans (Rhinella marina, Lithobates catesbeianus, Xenopus laevis, Pyxicephalus edulis) and three urodeles (Necturus maculosus, Ambystoma tigrinum, Amphiuma tridactylum) that span a representative range of relative ventricle mass (RVM) found in amphibians. Previous research has documented that RVM correlates with dehydration tolerance and maximal aerobic capacity in amphibians. The power output (mW g−1 ventricle mass) and stroke work (mJ g−1 ventricle muscle mass) were independent of RVM and were indistinguishable from previously published results for fish and reptiles. RVM was significantly correlated with maximum power output (P max, mW kg−1 body mass), stroke volume, cardiac output, afterload pressure (P O) at P max, and preload pressure (P I) at P max. P I at P max and P O at P max also correlated very closely with each other. The increases in both P I and P O at maximal power outputs in large hearts suggest that concomitant increases in blood volume and/or increased modulation of vascular compliance either anatomically or via sympathetic tone on the venous vasculature would be necessary to achieve P max in vivo. Hypotheses for variation in RVM and its concomitant increased P max in amphibians are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acierno R, Gattuso A, Cerra MC, Pellegrino D, Agnisola C, Tota B (1994) The isolated and perfused working heart of the frog, Rana esculenta: an improved preparation. Gen Pharmacol 25:521–526

    Article  PubMed  CAS  Google Scholar 

  • Acierno R, Agnisola C, Tota B, Sidell BD (1997) Myoglobin enhances cardiac performance in Antarctic icefish species that express the protein. Am J Physiol 273:R100–R106

    PubMed  CAS  Google Scholar 

  • Agnisola C, Venzi R, Houlihan DF, Tota B (1994) Coronary flow-pressure relationship in the working isolated fish heart: trout (Oncorhynchus mykiss) versus torpedo (Torpedo marmorata). Philos Trans R Soc B 343:189–198

    Article  Google Scholar 

  • Agnisola C, Acierno R, Calvo J, Farina F, Tota B (1997) In vitro cardiac performance in the sub-Antarctic notothenioids Eleginops maclovinus (subfamily Eleginopinae), Paranotothenia magellanica, and Patagonotothen tessellata (subfamily Nototheniinae). Comp Biochem Physiol A 118:1437–1445

    Article  Google Scholar 

  • Allaby M (1994) Oxford concise dictionary of ecology. Oxford University Press, New York

    Google Scholar 

  • Axelsson M, Wahlqvist I, Ehrenstrom F (1989) Cardiovascular regulation in the mudpuppy, Necturus maculosus at rest and during short-term exercise. Exp Biol 48:253–259

    PubMed  CAS  Google Scholar 

  • Blakemore C, Cuthbert A, Jennett S, Porter R, Schiebinger L, Sears T, Tansey T (2001) The Oxford companion to the body. Oxford University Press, Oxford

  • Blank JM, Morrissette JM, Davie PS, Block BA (2002) Effects of temperature, epinephrine and Ca2+ on the hearts of yellowfin tuna (Thunnus albacares). J Exp Biol 205:1881–1888

    PubMed  CAS  Google Scholar 

  • Blank JM, Morrissette JM, Landeira-Fernandez AM, Blackwell SB, Williams TD, Block BA (2004) In situ cardiac performance of Pacific bluefin tuna hearts in response to acute temperature change. J Exp Biol 207:881–890

    Article  PubMed  Google Scholar 

  • Conklin D, Chavas A, Duff WD, Weaver Jr L, Zhang Y, KR O (1997) Cardiovascular effects of arginine vasotocin in the rainbow trout Oncorhynchus mykiss. J Exp Biol 200:2812–2832

  • Davidson DW, Davie PS (2001) Mechanical efficiency of isolated in situ perfused hearts of the eel Anguilla australis. Comp Biochem Physiol A 128:167–175

    Article  CAS  Google Scholar 

  • Davie PS, Farrell AP (1991) Cardiac performance of an isolated heart preparation from the dogfish: the effects of hypoxia and coronary artery perfusion. Can J Zool 69:1822–1828

    Article  Google Scholar 

  • Davie PS, Farrell AP (2005) Cardiac performance of an isolated eel heart: effects of hypoxia and responses to coronary artery occlusion. J Exp Zool 262:113–121

    Article  Google Scholar 

  • Farrell AP (1991) From hagfish to tuna: a perspective on cardiac function in fish. Physiol Zool 64:1137–1164

    Google Scholar 

  • Farrell AP, Stecyk JA (2007) The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp Biochem Physiol A 147:300–312

    Article  CAS  Google Scholar 

  • Farrell AP, MacLeod KR, Driedzic WR, Wood S (1983) Cardiac performance in the in situ perfused fish heart during extracellular acidosis: interactive effects of adrenaline. J Exp Biol 107:415–429

    PubMed  CAS  Google Scholar 

  • Farrell AP, Wood S, Hart T (1985) Myocardial oxygen consumption in the sea raven Hemitripterus americanus the effect of volume loading, pressure loading, and progressive hypoxia. J Exp Biol 117:237–250

    Google Scholar 

  • Farrell AP, Davie PS, Franklin CE, Johansen JA, Brill RB (1992) Cardiac physiology in tunas: I. In vitro perfused heart preparation from yellowfin and skipjack tunas. Can J Zool 70:1200–1210

    Article  Google Scholar 

  • Feng HZ, Chen X, Hossain MM, Jin JP (2012) Toad heart utilizes exclusively slow skeletal muscle troponin T: an evolutionary adaptation with potential functional benefits. J Biol Chem 287:29753–29764

    Article  PubMed  CAS  Google Scholar 

  • Forster ME (1989) Performance of the heart of the hagfish, Eptatretus cirrhatus. Fish Physiol Biochem 6:327–331

    Article  Google Scholar 

  • Franklin CE (1994) Intrinsic properties of an in situ turtle heart (Emydura signata) preparation perfused via both atria. Comp Biochem Physiol A 107:501–507

    Article  Google Scholar 

  • Franklin CE, Axelsson M (1994) The intrinsic properties of an in situ perfused crocodile heart. J Exp Biol 186:269–288

    PubMed  Google Scholar 

  • Garofalo F, Imbrogno S, Gattuso A, Spena A, Cerra MC (2006) Cardiac morpho-dynamics in Rana esculenta: influence of sex and season. Comp Biochem Physiol 145A:82–89

    CAS  Google Scholar 

  • Gatten RE, Miller K, Full RJ (1992) Energetics at rest and during locomotion. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. University of Chicago Press, Chicago, pp 314–377

    Google Scholar 

  • Graham MS, Farrell AP (1989) The effect of temperature acclimation and adrenaline on the performance of a perfused trout heart. Physiol Zool 62:38–61

    Google Scholar 

  • Graham JB, Lee HJ (2004) Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concepts about early tetrapods, the evolution of air breathing, and the vertebrate land transition? Physiol Biochem Zool 77:720–731

    Article  PubMed  Google Scholar 

  • Hedrick MS, Palioca WB, Hillman SS (1999) Effects of temperature and physical activity on blood flow shunts and intracardiac mixing in the toad Bufo marinus. Physiol Biochem Zool 72:509–519

    Google Scholar 

  • Hillman SS (1976) Cardiovascular correlates of maximal oxygen consumption rates in anuran amphibians. J Comp Physiol B 109:199–207

    Article  CAS  Google Scholar 

  • Hillman SS (1980) Physiological correlates of differential dehydration tolerance in anuran amphibians. Copeia 1980:125–129

    Article  Google Scholar 

  • Hillman SS (1984) Inotropic influence of dehydration and hyperosmolal solutions on amphibian cardiac muscle. J Comp Physiol 154B:325–328

    Google Scholar 

  • Hillman SS, Withers PC, Hedrick MS, Kimmel PB (1985) The effects of erythrocythemia on blood viscosity, maximal systemic oxygen transport capacity and maximal rates of oxygen consumption in an amphibian. J Comp Physiol 155B:577–581

    Google Scholar 

  • Hillman SS, Withers P, Kimmel PB (1998) Plasma catecholamines with hemorrhage in the bullfrog, Rana catesbeiana. J Exp Zool 280:174–181

    Article  PubMed  CAS  Google Scholar 

  • Hillman SS, Withers PC, Drewes RC (2000) Correlation of ventricle mass and dehydration tolerance in amphibians. Herpetologica 56:413–420

    Google Scholar 

  • Hillman SS, Withers PC, Drewes RC, Hillyard SD (2009) Ecological and environmental physiology of amphibians. Oxford University Press, Oxford

    Google Scholar 

  • Hillman SS, DeGrauw EA, Hoagland T, Hancock T, Withers P (2010) The role of vascular and interstitial compliance and vascular volume in the regulation of blood volume in two species of anuran. Physiol Biochem Zool 83:55–67

    Article  PubMed  Google Scholar 

  • Hillman SS, Hancock T, Hedrick MS (2013) A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange. J Comp Physiol B 183:167–179

    Article  PubMed  CAS  Google Scholar 

  • Hoagland TM, Weaver L, Conlon MJ, Wang Y, Olsen KR (2000) Effects of endothelin-1 and homologous trout endothelin on cardiovascular function in rainbow trout. Am J Physiol 278(2):460–468

    Google Scholar 

  • Hoyt RW, Eldridge M, Wood SC (1984) Noninvasive pulsed Doppler determination of cardiac output in an unanesthetized neotenic salamander, Ambystoma tigrinum. J Exp Zool 230:491–493

    Article  Google Scholar 

  • Johansen K (1963) Cardiovascular dynamics in the amphibian, Amphiuma tridactylum. Acta Physiol Scand Suppl 217:1–82

    Google Scholar 

  • Johnston IA, Fitch N, Zummo G, Wood RE, Harrison P, Tota B (1983) Morphometric and ultrastructural features of the ventricular myocardium of the haemoglobin-less icefish Chaenocephalus aceratus. Comp Biochem Physiol A 76:475–480

    Article  Google Scholar 

  • McKean T, Scherzer A, Park A (1997) Hypoxia and ischaemia in buffer-perfused toad hearts. J Exp Biol 200:2575–2581

    PubMed  CAS  Google Scholar 

  • Mendonca PC, Genge AG, Deitch EJ, Gamperl AK (2007) Mechanisms responsible for the enhanced pumping capacity of the in situ winter flounder heart (Pseudopleuronectes americanus). Am J Physiol 293:R1112–R1120

    Article  Google Scholar 

  • Olson KR, Farrell AP (2006) The cardiovascular system, chap 4. In: Evans DH, Claiborne JB (eds) The physiology of fishes, 3rd edn. Taylor and Francis Group, Boca Raton

  • Olson KR, Conklin DJ, Weaver L (1997) Cardiovascular effects of homologous bradykinin in rainbow trout. Am J Physiol 272:R1112–R1120

    PubMed  CAS  Google Scholar 

  • Ostadal B (1979) Developmental relationships between structure, blood supply and metabolic patterns of the vertebrate heart. Cor Vasa 20:380–386

    Google Scholar 

  • Pough FH (1980) The advantages of ectothermy for tetrapods. Am Nat 115:95–112

    Article  Google Scholar 

  • Poupa O, Lindstrom L (1983) Comparative and scaling aspects of heart and body weights with reference to blood supply of cardiac fibers. Comp Biochem Physiol 76A:413–421

    Article  Google Scholar 

  • Poupa O, Ostadahl B (1969) Experimental cardiomegalies and “cardiomegalies” in free-living animals. Ann N Y Acad Sci 156:445–468

    Article  PubMed  CAS  Google Scholar 

  • Romero SMB, Pereira AF, Garofalo MAR, Hoffman A (2004) Effects of exercise on plasma catecholamine levels in the toad, Bufo paracnemis: role of the adrenals and neural control. J Exp Zool 301A:911–918

    Article  CAS  Google Scholar 

  • Sandblom E, Axelsson M, Farrell AP (2006) Central venous pressure and mean circulatory filling pressure in the dogfish, Squalus acanthias: adrenergic control and the role of the pericardium. Am J Physiol 291:R1465–R1473

    CAS  Google Scholar 

  • Santer RM, Walker MG, Emerson L, Witthames PR (1983) On the morphology of the heart ventricle in marine teleost fish (Teleostei). Comp Biochem Physiol 76A:453–457

    Article  Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177:222–228

    Article  PubMed  CAS  Google Scholar 

  • Titu V, Vornamen M (2005) Morphology and fine structure of the heart of the burbot, a cold stenothermal fish. J Fish Biol 61:106–121

    Article  Google Scholar 

  • Tota B, Acierno R, Agnisola C (1991) Mechanical performance of the isolated and perfused heart of the haemoglobinless Antarctic icefish Chionodraco hamatus: effects of loading conditions and temperature. Philos Trans R Soc B 332:191–198

    Article  Google Scholar 

  • Tota B, Cerra CC, Gattuso A (2010) Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a “whip-brake” system of the endocrine heart. J Exp Biol 213:3081–3103

    Article  PubMed  CAS  Google Scholar 

  • West NH, Smits AW (1994) Cardiac output in conscious toads (Bufo marinus). J Exp Biol 186:315–323

    PubMed  CAS  Google Scholar 

  • Withers PC, Hillman SS (1988) A steady-state model of maximal oxygen and carbon dioxide transport in anuran amphibians. J Appl Physiol 64:860–868

    PubMed  CAS  Google Scholar 

  • Withers PC, Hillman SS (2001) Allometric and ecological relationships of ventricle and liver mass in anuran amphibians. Funct Ecol 15:60–69

    Article  Google Scholar 

  • Withers P, Hillman SS, Kimmel PB (1988) Effects of activity, hemorrhage, and dehydration on plasma catecholamine levels in the marine toad. Gen Comp Endocrinol 72:63–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial assistance was provided by National Science Foundation IOS-0843082 (SH) and the Forbes-Lea Fund (GK). The work represents parts of an MS Thesis submitted to PSU. The guidance and input received from committee members Drs. Gary Brodowicz, and Jason Podrabsky is greatly appreciated. We thank the anonymous reviewers for their thoughtful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley S. Hillman.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kluthe, G.J., Hillman, S.S. Cardiac performance correlates of relative heart ventricle mass in amphibians. J Comp Physiol B 183, 801–809 (2013). https://doi.org/10.1007/s00360-013-0756-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-013-0756-1

Keywords

Navigation