Skip to main content
Log in

The key roles of salicylic acid and sulfur in plant salinity stress tolerance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The salinization of agriculture soils over the globe has become one of the most devastating stresses and is significantly limiting cultivated land area, and crop productivity and quality. It is very imperative to explore both salinity tolerance in plants and insights into approaches (and underlying mechanisms) for effectively controlling salinity impacts. To this end, the role of phytohormone salicylic acid (SA) and plant nutrient sulfur (S) in promoting salinity tolerance has been researched in isolated studies, and SA–S interaction results have been little discussed. Given this, taking into account recent literature on SA, S and soil salinity, this paper aimed to (i) overview of the major impacts of soil salinity on plant health; (ii) highlight the significance of SA and S in improving plant salinity tolerance; (iii) discuss the role and underlying mechanism of SA, S and their interaction in the modulation of plant growth and development under salinity stress; and also to (iv) appraise the discussed literature and enlighten the major prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Salam MM (2016) Effect of foliar application of salicylic acid and micronutrients on the berries quality of “Bez El Naka” local grape cultivar. Science 6:178–188

    Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Mir RA, Alyemeni MN, Ahmad P (2020) Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol Biochem 147:31–42

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Latef AAA, Hashem A, Abd Allah EF, Gucel S, Tran LSP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmad F, Singh A, Kamal A (2017) Ameliorative effect of salicylic acid in salinity stressed Pisum sativum by improving growth parameters, activating photosynthesis and enhancing antioxidant defense system. Biosci Biotechnol Res Commun 10:481–489

    Article  Google Scholar 

  • Al-Hakimi AMA, Hamada AM (2001) Counteraction of salinity stress on wheat plants by grain soaking in ascorbic acid, thiamin or sodium salicylate. Biol Plant 44:253–261

    Article  Google Scholar 

  • Al-Mahmud J, Al Hasanuzzaman M, Khan MIR, Nahar K, Fujita M (2020) β-Aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification. Plants. https://doi.org/10.3390/plants9020241

  • Anjum NA, Umar S, Ahmad A, Iqbal M, Khan NA (2008) Sulphur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione: Sulphur protects mustard from cadmium toxicity. Plant Growth Regul 54:271–279

    Article  CAS  Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:210

    PubMed  PubMed Central  Google Scholar 

  • Asgher M, Khan NA, Khan MIR, Fatma M, Masood A (2014) Ethylene production is associated with alleviation of cadmium-induced oxidative stress by sulfur in mustard types differing in ethylene sensitivity. Ecotoxicol Environ Saf 106:54–61

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190

    Article  CAS  Google Scholar 

  • Astolfi S, Zuchi S (2013) Adequate S supply protects barley plants from adverse effects of salinity stress by increasing thiol contents. Acta Physiol Plant 35:175–181

    Article  CAS  Google Scholar 

  • Aziz A, Ashraf M, Sikandar S, Asif M, Akhtar N, Shahzad SM, Wasaya A, Raza A, Babar BH (2019) Optimizing sulfur for improving salt tolerance of sunflower (Helianthus annuus L.). Soil Environ 38:222–233

    Article  CAS  Google Scholar 

  • Baek D, Pathange P, Chung JS, Jiang J, Gao L, Oikawa A, Hirai MY, Saito K, Pare PW, Shi HA (2010) Stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 33:1383–1392

    CAS  PubMed  Google Scholar 

  • Batista VCV, Pereira IMC, de Oliveira P-MS, Canuto KM, Pereira RDCA, Rodrigues THS, de Carvalho HH (2019) Salicylic acid modulates primary and volatile metabolites to alleviate salt stress-induced photosynthesis impairment on medicinal plant Egletes viscose. Environ Exp Bot 167:103870

    Article  CAS  Google Scholar 

  • Carpici EB, Celik N, Bayram G, Asik BB (2010) The effects of salt stress on the growth, biochemical parameter and mineral element content of some maize (Zea mays L.) cultivars. Afr J Biotechnol 9:6937–6942

    CAS  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64:1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Csiszár J, Horváth E, Váry Z, Gallé Á, Bela K, Brunner S, Tari I (2014) Glutathione transferase supergene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78:15–26

    Article  PubMed  CAS  Google Scholar 

  • Cuin TA, Shabala S (2008) Compatible solutes mitigate damaging effects of salt stress by reducing the impact of stress-induced reactive oxygen species. Plant Signal Behav 3:207–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation – the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • de Souza Freitas WE, de Oliveira AB, Mesquita RO, de Carvalho HH, Prisco JT, Gomes-Filho E (2019) Sulfur-induced salinity tolerance in lettuce is due to a better P and K uptake, lower Na/K ratio and an efficient antioxidative defense system. Sci Hortic 257:108764

    Article  CAS  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79:391–399

    Article  CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul 55:207

    Article  CAS  Google Scholar 

  • Faghih S, Ghobadi C, Zarei A (2017) Response of strawberry plant cv.‘Camarosa’ to salicylic acid and methyl jasmonate application under salt stress condition. J Plant Growth Regul 36:651–659

    Article  CAS  Google Scholar 

  • Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan MZ, Shah AN, Ullah A, Nasrullah Khan F et al (2016) A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice. Plant Physiol Biochem 103:191–198

    Article  CAS  PubMed  Google Scholar 

  • Farahbakhsh H, Pasandi Pour A, Reiahi N (2017) Physiological response of henna (Lawsonia inermis L.) to salicylic acid and salinity. Plant Prot Sci 20:237–247

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol Environ Saf 147:1010–1016

    Article  CAS  PubMed  Google Scholar 

  • Farheen J, Mansoor S, Abideen Z (2018) Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in mungbean seedlings (Vigna radiata L.) at salt stress. Pak J Bot 50:901–912

    CAS  Google Scholar 

  • Fatma M, Khan RH, Masood A, Khan NA (2013) Coordinate changes in assimilatory sulfate reduction are correlated to salinity tolerance: involvement of phytohormones. Annu Res Rev Biol 10:267–925

    Google Scholar 

  • Fatma M, Asgher M, Masood A, Khan NA (2014) Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot 107:55–63

    Article  CAS  Google Scholar 

  • Fatma M, Masood A, Per TS, Khan NA (2016) Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci 7:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Gharbi E, Martínez JP, Benahmed H, Dailly H, Quinet M, Lutts S (2017) The salicylic acid analog 2, 6-dichloroisonicotinic acid has specific impact on the response of the halophyte plant species Solanum chilense to salinity. Plant Growth Regul 82:517–525

    Article  CAS  Google Scholar 

  • Gharbi E, Lutts S, Dailly H, Quinet M (2018) Comparison between the impacts of two different modes of salicylic acid application on tomato (Solanum lycopersicum) responses to salinity. Plant Signal Behav 13:e1469361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep 5:353–365

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and responses of plants under salt stress. Springer, New York, pp 25–87

    Chapter  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Mahmud JA, Nahar K, Mohsin SM, Parvin K, Fujita M (2018) Interaction of sulfur with phytohormones and signaling molecules in conferring abiotic stress tolerance to plants. Plant Signal Behav 13:e1477905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Cao H, Niu Y, Dai S (2012) Expression analysis of nudix hydrolase genes in Chrysanthemum lavandulifolium. Plant Mol Biol Report 30:973–982

    Article  CAS  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity-caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.). Agric Food Secur 7:44

    Article  Google Scholar 

  • Hussain SJ, Masood A, Anjum NA, Khan NA (2019) Sulfur-mediated control of salinity impact on photosynthesis and growth in mungbean cultivars screened for salt tolerance involves glutathione and proline metabolism, and glucose sensitivity. Acta Physiol Plant 41:1–13

    Article  CAS  Google Scholar 

  • Hussain SJ, Khan NA, Anjum NA, Masood A, Khan MIR (2020) Mechanistic elucidation of salicylic acid and sulphur-induced defence systems, nitrogen metabolism, photosynthetic, and growth potential of mungbean (Vigna radiata) under salt stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10159-4

  • Iqbal N, Nazar R, Syeed S, Masood A, Khan NA (2011) Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot 62:4955–4963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Khan NA, Nazar R, Silva JA (2012) Ethylene-stimulated photosynthesis results from increased nitrogen and sulfur assimilation in mustard types that differ in photosynthetic capacity. Environ Exp Bot 78:84–90

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42

    Article  CAS  Google Scholar 

  • Iqbal N, Umar S, Khan NA (2015) Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178:84–91

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahan B, Sehar Z, Masood A, Anjum NA, Khan MIR, Khan NA (2019) Sulfur availability potentiates phytohormones-mediated action in plants. In: Khan MIR, Reddy S, Ferrante A, Khan NA (eds) Plant signaling molecules: role and regulation under stressful environments. Woodhead Publishing, Elsevier, pp 287–301

    Chapter  Google Scholar 

  • Jahan B, AlAjmi MF, Rehman MT, Khan NA (2020) Treatment of nitric oxide supplemented with nitrogen and sulfur regulates photosynthetic performance and stomatal behavior in mustard under salt stress. Physiol Plant 168:490–510

    CAS  PubMed  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul 76:25–40

    Article  CAS  Google Scholar 

  • Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Jini D, Joseph B (2017) Physiological mechanism of salicylic acid for alleviation of salt stress in rice. Rice Sci 24:97–108

    Article  Google Scholar 

  • Jumali SS, Said IM, Ismail I, Zainal Z (2011) Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Aust J Crop Sci 5:296

    CAS  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Anjum NA, Nazar R, Iqbal N (2009a) Increased activity of atp-sulfurylase and increased contents of cysteine and glutathione reduce high cadmium-induced oxidative stress in mustard cultivar with high photosynthetic potential. Russ J Plant Physiol 56:670–677

    Article  CAS  Google Scholar 

  • Khan NA, Nazar R, Anjum NA (2009b) Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress. Sci Hortic 122:455–460

    Article  CAS  Google Scholar 

  • Khan NA, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1:1–8

    Article  CAS  Google Scholar 

  • Khan NA, Nazar R, Iqbal N, Anjum NA (2012) Phytohormones and abiotic stress tolerance in plants. Springer-Verlag, Berlin/Heidelberg

    Book  Google Scholar 

  • Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan MIR, Asgher M, Khan NA (2014a) Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol Biochem 80:67–74

    Article  CAS  PubMed  Google Scholar 

  • Khan NA, Khan MIR, Asghar M, Fatma M, Masood A, Syeed S (2014b) Salinity tolerance in plants, revisiting the role of sulfur metabolites. J Plant Biochem Physiol 2:1–8

    Article  Google Scholar 

  • Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462

    PubMed  PubMed Central  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kim Y, Mun BG, Khan AL, Waqas M, Kim HH, Shahzad R, Lee IJ (2018) Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One 13:e0192650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kopriva S, Jones S, Koprivova A, Suter M, Von Ballmoos P, Brander K, Flückiger J, Brunold C (2001) Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. Plant Biol 3:24–31

    Article  CAS  Google Scholar 

  • Koprivova A, North KA, Kopriva S (2008) Complex signaling network in regulation of adenosine 5′-phosphosulfate reductase by salt stress in arabidopsis roots. Plant Physiol 146:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2008) Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Funct Plant Biol 35:318–327

    Article  CAS  PubMed  Google Scholar 

  • Koralewska A, Buchner P, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2009) Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. J Plant Physiol 166:168–179

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim SG, Park CM (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol 188:626–637

    Article  CAS  PubMed  Google Scholar 

  • Li G, Peng X, Wei L, Kang G (2013) Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 529:321–325

    Article  CAS  PubMed  Google Scholar 

  • Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M (2019) Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci 10:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed AR, Tarpley L (2009) Effects of elevated ultraviolet-B radiation on productive tillers, spikelet sterility and grain characteristics of southern US rice (Oryza sativa L.) cultivars. J Agron Crop Sci 195:292–300

    Article  Google Scholar 

  • Mostofa MG, Fujita M, Tran LS (2015) Nitric oxide mediates hydrogen peroxide-and salicylic acid-induced salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regul 77:265–277

    Article  CAS  Google Scholar 

  • Mukhtar I, Shahid MA, Khan MW, Balal RM, Iqbal MM, Naz T, Zubair M, Ali HH (2016) Improving salinity tolerance in chili by exogenous application of calcium and sulphur. Soil Environ 35:56–64

    CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Iqbal N, Masood A, Syeed S, Khan NA (2011) Understanding the significance of sulfur in improving salinity tolerance in plants. Environ Exp Bot 70:80–87

    Article  CAS  Google Scholar 

  • Nazar R, Umar S, Khan NA (2014a) Involvement of salicylic acid in sulfur induced salinity tolerance: a role of glutathione. Annu Res Rev Biol 4:3875–3893

    Article  Google Scholar 

  • Nazar R, Khan MI, Iqbal N, Masood A, Khan NA (2014b) Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152:331–344

    Article  CAS  PubMed  Google Scholar 

  • Nazar R, Umar S, Khan NA (2015a) Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav 10:e1003751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazar R, Umar S, Khan NA, Sareer O (2015b) Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S Afr J Bot 98:84–94

    Article  CAS  Google Scholar 

  • Nie S, Yue H, Zhou J, Xing D (2015) Mitochondrial-derived reactive oxygen species play a vital role in the salicylic acid signaling pathway in Arabidopsis thaliana. PLoS One 10:e0119853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie W, Gong B, Chen Y, Wang J, Wei M, Shi Q (2018) Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci Hortic 235:413–423

    Article  CAS  Google Scholar 

  • Oraghi Ardebili N, Iranbakhsh A, Oraghi Ardebili Z (2019) Efficiency of selenium and salicylic acid protection against salinity in soybean. Plant Physiol 9:2727–2738

    Google Scholar 

  • Osman AS, Rady MM (2012) Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. J Hortic Sci Biotechnol 87:626–632

    Article  CAS  Google Scholar 

  • Pál M, Kovács V, Szalai G, Soós V, Ma X, Liu H, Mei H, Janda T (2014) Salicylic acid and abiotic stress responses in rice. J Agron Crop Sci 200:1–11

    Article  CAS  Google Scholar 

  • Palma F, López-Gómez M, Tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerance of Medicago sativa in symbiosis with Sinorhizobium meliloti by preventing nitrogen fixation inhibition. Plant Sci 208:75–82

    Article  CAS  PubMed  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075

    Article  CAS  Google Scholar 

  • Parvin K, Ahamed KU, Islam MM, Haque MN (2015) Response of tomato plant under salt stress: role of exogenous calcium. J Plant Sci 10:222–233

    Article  CAS  Google Scholar 

  • Per TS, Fatma M, Asgher M, Javied S, Khan NA (2017) Salicylic acid and nutrients interplay in abiotic stress tolerance. In: Nazar R, Iqbal N, Khan NA (eds) Salicylic acid: a multifaceted hormone. Springer, Singapore, pp 221–237

    Chapter  Google Scholar 

  • Perveen S, Iqbal N, Saeed M et al (2018) Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid DTC) under salt stress. Braz J Bot 41:805–815

    Article  Google Scholar 

  • Pokotylo I, Kravets V, Ruelland E (2019) Salicylic acid binding proteins (SABPs): the hidden forefront of salicylic acid signalling. Int J Mol Sci 20:4377

    Article  CAS  PubMed Central  Google Scholar 

  • Rais L, Masood A, Inam A, Khan NA (2013) Sulfur and nitrogen co-ordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salt stress. J Plant Biochem Physiol 1:1

    Article  Google Scholar 

  • Reich M, Aghajanzadeh T, Helm J, Parmar S, Hawkesford MJ, De Kok LJ (2017) Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant Soil 411:319–332

    Article  CAS  PubMed  Google Scholar 

  • Ren CG, Kong CC, Xie ZH (2018) Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol 18:74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155

    Article  CAS  Google Scholar 

  • Samadi S, Habibi G, Vaziri A (2019) Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism and photochemical activity of strawberry under salt stress. Plant Physiol 9:2685–2694

    Google Scholar 

  • Scherer HW (2009) Sulfur in soils. J Plant Nutr Soil Sci 172:326–335

    Article  CAS  Google Scholar 

  • Sehar Z, Masood A, Khan NA (2019) Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ Exp Bot 161:277–289

    Article  CAS  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32:37–249

    Article  Google Scholar 

  • Shan C, Liu H, Zhao L, Wang X (2014) Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biol Plant 58:169–173

    Article  CAS  Google Scholar 

  • Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PLoS One 10:e0126783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  CAS  PubMed Central  Google Scholar 

  • Shokat S, Großkinsky DK (2019) Tackling salinity in sustainable agriculture-what developing countries may learn from approaches of the developed world. Sustainability 11:4558

    Article  CAS  Google Scholar 

  • Siboza XI, Bertling I, Odindo AO (2017) Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their effect on chilling tolerance in lemon fruit [Citrus limon (L.) Burm. F.]. Sci Hortic 225:659–567

    Article  CAS  Google Scholar 

  • Singh M, Singh VP, Prasad SM (2016) Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiol Biochem 109:72–83

    Article  CAS  PubMed  Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A 92:9373–9377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, Srivastava S, Lokhande VH, D’Souza SF, Suprasanna P (2015) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassica juncea L.) and halophyte (Sesuvium portulacastrum L.). Front Environ Sci 3:19

    Article  Google Scholar 

  • Syeed S, Anjum NA, Nazar R, Iqbal N, Masood A, Khan NA (2011) Salicylic acid-mediated changes in photosynthesis, nutrients content and antioxidant metabolism in two mustard (Brassica juncea L.) cultivars differing in salt tolerance. Acta Physiol Plant 33:877–886

    Article  CAS  Google Scholar 

  • Szepesi Á, Csiszár J, Gémes K, Horváth E, Horváth F, Simon ML, Tari I (2009) Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L. J Plant Physiol 166:914–925

    Article  CAS  PubMed  Google Scholar 

  • Tahjib-Ul-Arif M, Siddiqui MN, Sohag AA, Sakil MA, Rahman MM, Polash MA, Mostofa MG, Tran LS (2018) Salicylic acid-mediated enhancement of photosynthesis attributes and antioxidant capacity contributes to yield improvement of maize plants under salt stress. J Plant Growth Regul 37:1318–1330

    Article  CAS  Google Scholar 

  • Tamaoki M (2008) The role of phytohormone signaling in ozone-induced cell death in plants. Plant Signal Behav 3:166–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Torun H (2019) Time-course analysis of salicylic acid effects on ROS regulation and antioxidant defense in roots of hulled and hulless barley under combined stress of drought, heat and salinity. Physiol Plant 165:169–182

    Article  CAS  PubMed  Google Scholar 

  • Tufail A, Arfan M, Gurmani AR, Khan A, Bano A (2013) Salicylic acid induced salinity tolerance in maize (Zea mays). Pak J Bot 45:75–82

    CAS  Google Scholar 

  • Ulfat M, Athar HUR, Ashraf M, Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39:1593–1608

    Google Scholar 

  • Wang Y, Shen W, Chan Z, Wu Y (2015) Endogenous cytokinin overproduction modulates ROS homeostasis and decreases salt stress resistance in Arabidopsis thaliana. Front Plant Sci 6:1004

    PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Xu GY, Rocha PSCF, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Pan C, Du Y, Li D, Liu W (2018) Exogenous salicylic acid regulates reactive oxygen species metabolism and ascorbate–glutathione cycle in Nitraria tangutorum Bobr. under salinity stress. Physiol Mol Biol Plants 24:577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildirim E, Turan M, Guvenc I (2008) Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J Plant Nutr 31:593–612

    Article  CAS  Google Scholar 

  • Yoshida K, Noguchi K (2009) Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol 50:1449–1462

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Xu S, Yang S, Chen Y (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Shan D (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, NAK and NAA writing—original draft preparation, FR and NAA writing—review and editing, NAK, NAA and AS supervision, NAK All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Nafees A. Khan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasheed, F., Anjum, N.A., Masood, A. et al. The key roles of salicylic acid and sulfur in plant salinity stress tolerance. J Plant Growth Regul 41, 1891–1904 (2022). https://doi.org/10.1007/s00344-020-10257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-020-10257-3

Keywords

Navigation