Skip to main content

Advertisement

Log in

Effect of metal oxide nanoparticles on thermal behavior of polyvinyl alcohol

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymers reinforced with metal oxide nanoparticles exhibit interesting possibilities from an application point of view due to the homogeneous distribution of nanoparticles and superior thermal and mechanical properties. In the present work, silicon dioxide (SiO2), zirconium dioxide (ZrO2), and zinc oxide (ZnO) nanoparticles were prepared by the microwave hydrothermal method, and polymer nanocomposites based on them were processed in polyvinyl alcohol (PVA) matrix. The size of the SiO2, ZrO2, and ZnO nanoparticles is around 80 nm, 44 nm, and 95.71 nm, respectively. The thermal decomposition behavior of pure PVA and nanocomposites was studied using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). In the case, of nanocomposites, at 50% weight loss, the temperature was shifted by nearly 80°C compared to the pure PVA. Furthermore, the SiO2 doped nanocomposites showed a three-stage temperature decomposition in the DSC spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Erol I, Hazman Ö, Aksu M (2023) Preparation of novel composites of polyvinyl alcohol containing hesperidin loaded ZnO nanoparticles and determination of their biological and thermal properties. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-023-02532-z

    Article  Google Scholar 

  2. Toumi I, Djelad H, Chouli F, Benyoucef A (2022) Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of Congo red and methylene blue dyes: structural characterization and adsorption performance. J Inorg Organomet Polym 32:112–121. https://doi.org/10.1007/s10904-021-02084-0

    Article  CAS  Google Scholar 

  3. Benchikh I, Dahou FZ, Lahreche S, Sabantina L, Benmimoun Y, Benyoucef A (2022) Development and characterization of novel hybrid materials of modified ZnO–SiO2 and polyaniline for adsorption of organic dyes. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2107921

    Article  Google Scholar 

  4. Faiza MZ, Khattak A, Alahmadi AA, Butt SU (2022) Development and investigation of high performance PVA/NiO and PVA/CuO nanocomposites with improved physical. Dielectr Mech Prop Mater 15:5154. https://doi.org/10.3390/ma15155154

    Article  CAS  Google Scholar 

  5. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1:607. https://doi.org/10.1007/s42452-019-0592-3

    Article  CAS  Google Scholar 

  6. Sinha SK (2001) The impact of synchrotron radiation on nanoscience. Appl Surf Sci 182:176–185. https://doi.org/10.1016/S0169-4332(01)00439-1

    Article  CAS  Google Scholar 

  7. Chen C-C, Herhold AB, Johnson CS, Alivisatos AP (1997) Size dependence of structural metastability in semiconductor nanocrystals. Science 276:398–401. https://doi.org/10.1126/science.276.5311.398

    Article  CAS  PubMed  Google Scholar 

  8. Weller H (1998) Quantum size colloids: from size-dependent properties of discrete particles to selforganized superstructures. Curr Opin Colloid Interface Sci 3:194–199. https://doi.org/10.1016/S1359-0294(98)80013-7

    Article  CAS  Google Scholar 

  9. Singh R, Kulkarni SG (2014) Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI shielding application. Polym Bull 71:497–513. https://doi.org/10.1007/s00289-013-1073-2

    Article  CAS  Google Scholar 

  10. Singh R, Kulkarni SG, Naik NH (2013) Effect of nano sized transition metal salts and metals on thermal decomposition behavior of polyvinyl alcohol. Adv Mater Lett 4:82–88. https://doi.org/10.5185/amlett.2013.icnano.114

    Article  CAS  Google Scholar 

  11. Singh R, Kulkarni SG (2013) Morphological and mechanical properties of poly (vinyl alcohol) doped with inorganic fillers. Int J Polym Mater 62:351–357. https://doi.org/10.1080/00914037.2012.700288

    Article  CAS  Google Scholar 

  12. Singh R, Kulkarni SG, Channe SS (2013) Thermal and mechanical properties of nano-titanium dioxide-doped polyvinyl alcohol. Polym Bull 70:1251–1264. https://doi.org/10.1007/s00289-012-0846-3

    Article  CAS  Google Scholar 

  13. Ramaraj B, Nayak SK, Yoon KR (2010) Poly (vinyl alcohol) and layered double hydroxide composites: thermal and mechanical properties. J Appl Polym Sci 116:1671–1677. https://doi.org/10.1002/app.31552

    Article  CAS  Google Scholar 

  14. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2007) Structural, electrical and optical characterization of pure and doped poly (vinyl alcohol)(PVA) polymer electrolyte films. Int J Polym Mater 56:579–591. https://doi.org/10.1080/00914030600972790

    Article  CAS  Google Scholar 

  15. Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252:1404–1409. https://doi.org/10.1016/j.apsusc.2005.02.138

    Article  CAS  Google Scholar 

  16. Maurya A, Chauhan P (2012) Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA. Polym Bull 68:961–972. https://doi.org/10.1007/s00289-011-0589-6

    Article  CAS  Google Scholar 

  17. Radoičić MB, Šaponjić ZV, Marinović-Cincović MT, Ahrenkiel SP, Bibić NM, Nedeljković JM (2012) The influence of shaped TiO2 nanofillers on thermal properties of polyvinyl alcohol. J Serb Chem Soc 77:699–714. https://doi.org/10.2298/JSC110331161R

    Article  CAS  Google Scholar 

  18. Khanna PK, Singh N, Charan S (2007) Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent film in PVA. Mater Lett 61:4725–4730. https://doi.org/10.1016/j.matlet.2007.03.064

    Article  CAS  Google Scholar 

  19. Buso D, Nairn KM, Gimona M, Hill AJ, Falcaro P (2011) Fast synthesis of MOF-5 microcrystals using sol- gel SiO2 nanoparticles. Chem Mater 23:929–934. https://doi.org/10.1021/cm101519s

    Article  CAS  Google Scholar 

  20. Kumar S, Malik MM, Purohit R (2017) Synthesis methods of mesoporous silica materials. Mater Today Proc 4:350–357. https://doi.org/10.1016/j.matpr.2017.01.032

    Article  Google Scholar 

  21. Roy B, Krishnan SP, Chandrasekaran N, Mukherjee A (2019) Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system. Compr Anal Chem 84:125–143. https://doi.org/10.1016/bs.coac.2019.04.009

    Article  CAS  Google Scholar 

  22. Corradi AB, Bondioli F, Ferrari AM, Focher B, Leonelli C (2006) Synthesis of silica nanoparticles in a continuous-flow microwave reactor. Powder Technol 167:45–48. https://doi.org/10.1016/j.powtec.2006.05.009

    Article  CAS  Google Scholar 

  23. Verma J, Bhattacharya A (2018) Analysis on synthesis of silica nanoparticles and its effect on growth of T. Harzianum and Rhizoctonia species. BJSTR 10:7890–7897. https://doi.org/10.26717/BJSTR.2018.10.001972

    Article  Google Scholar 

  24. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251. https://doi.org/10.1016/j.micpath.2017.06.039

    Article  CAS  PubMed  Google Scholar 

  25. Hembram KPSS, Rao GM (2008) Microwave synthesis of zirconia nanoparticles. J Nanosci Nanotechnol 8:4159–4162. https://doi.org/10.1166/jnn.2008.AN03

    Article  CAS  PubMed  Google Scholar 

  26. Shaik MR, Alam M, Adil SF, Kuniyil M, Al-Warthan A, Siddiqui MRH, Tahir MN, Labis JP, Khan M (2019) Solvothermal preparation and electrochemical characterization of cubic ZrO2 nanoparticles/highly reduced graphene (HRG) based nanocomposites. Materials 12:711. https://doi.org/10.3390/ma12050711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karthik K, Naik MM, Shashank M, Vinuth M, Revathi V (2019) Microwave-assisted ZrO2 nanoparticles and its photocatalytic and antibacterial studies. J Clust Sci 30:311–318. https://doi.org/10.1007/s10876-018-1484-1

    Article  CAS  Google Scholar 

  28. Matias ML, Carlos E, Branquinho R, do Valle H, Marcelino J, Morais M, Pimentel A, Rodrigues J, Monteiro T, Fortunato E, Martins R, Nunes D (2022) A comparison between solution-based synthesis methods of ZrO2 nanomaterials for energy storage applications. Energies 15:6452. https://doi.org/10.3390/en15176452

    Article  CAS  Google Scholar 

  29. Mallakpour S, Shafiee E (2018) A simple method for the sonochemical synthesis of PVA/ZrO2-vitamin B1 nanocomposites: morphology, mechanical, thermal and wettability investigations. Ultrason Sonochem 40:881–889. https://doi.org/10.1016/j.ultsonch.2017.08.039

    Article  CAS  PubMed  Google Scholar 

  30. Kazeminezhad I, Sadollahkhani A, Farbod M (2013) Synthesis of ZnO nanoparticles and flower-like nanostructures using nonsono-and sono-electrooxidation methods. Mater Lett 92:29–32. https://doi.org/10.1016/j.matlet.2012.10.064

    Article  CAS  Google Scholar 

  31. Stanković A, Veselinović L, Škapin SD, Marković S, Uskoković D (2011) Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid. J Mater Sci 46:3716–3724. https://doi.org/10.1007/s10853-011-5273-6

    Article  CAS  Google Scholar 

  32. Lee SD, Nam S-H, Kim M-H, Boo J-H (2012) Synthesis and photocatalytic property of ZnO nanoparticles prepared by spray-pyrolysis method. Phys Procedia 32:320–326. https://doi.org/10.1016/j.phpro.2012.03.563

    Article  CAS  Google Scholar 

  33. Singh AK, Nakate UT (2013) Photocatalytic properties of microwave-synthesized TiO2 and ZnO nanoparticles using malachite green dye. J Nanomater. https://doi.org/10.1155/2013/310809

    Article  Google Scholar 

  34. Seo M, Jung Y, Lim D, Cho D, Jeong Y (2013) Piezoelectric and field emitted properties of controlled ZnO nanorods on CNT yarns. Mat Lett 92:177–180. https://doi.org/10.1016/j.matlet.2012.10.076

    Article  CAS  Google Scholar 

  35. Ponnamma D, Cabibihan J-J, Rajan M, Pethaiah SS, Deshmukh K, Gogoi JP, Pasha SKK, Ahamed MB, Krishnegowda J, Chandrashekar BN, Polu AR, Cheng C (2019) Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater Sci Eng C 98:1210–1240. https://doi.org/10.1016/j.msec.2019.01.081

    Article  CAS  Google Scholar 

  36. Li R, Yabe S, Yamashita M, Momose S, Yoshida S, Sakae Y, Yin S, Sato T (2002) Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process. Solid State Ion 151:235–241. https://doi.org/10.1016/S0167-2738(02)00715-4

    Article  CAS  Google Scholar 

  37. Wang Z-S, Huang C-H, Huang Y-Y, Hou Y-J, Xie P-H, Zhang B-W, Cheng H-M (2001) A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode. Chem Mater 13:678–682. https://doi.org/10.1021/cm000230c

    Article  CAS  Google Scholar 

  38. Quadri TW, Olasunkanmi LO, Fayemi OE, Solomon MM, Ebenso EE (2017) Zinc oxide nanocomposites of selected polymers: synthesis, characterization, and corrosion inhibition studies on mild steel in HCl solution. ACS Omega 2:8421–8437. https://doi.org/10.1021/acsomega.7b01385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang L, Wu W, Huang X, He J, Jiang P (2015) Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 107:67–74. https://doi.org/10.1016/j.compscitech.2014.12.009

    Article  CAS  Google Scholar 

  40. Parangusan H, Ponnamma D, Al Ali Al-Maadeed M, Marimuthu A (2018) Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye. Photochem Photobiol 94:237–246. https://doi.org/10.1111/php.12867

    Article  CAS  PubMed  Google Scholar 

  41. Shim J-W, Kim J-W, Han S-H, Chang I-S, Kim H-K, Kang H-H, Lee O-S, Suh K-D (2002) Zinc oxide/polymethylmethacrylate composite microspheres by in situ suspension polymerization and their morphological study. Colloids Surf A Physicochem Eng 207:105–111. https://doi.org/10.1016/S0927-7757(02)00044-4

    Article  CAS  Google Scholar 

  42. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B Biol 120:66–73. https://doi.org/10.1016/j.jphotobiol.2013.01.004

    Article  CAS  Google Scholar 

  43. Chen JH, Cheng C-Y, Chiu W-Y, Lee C-F, Liang N-Y (2008) Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization. Eur Polym J 44:3271–3279. https://doi.org/10.1016/j.eurpolymj.2008.07.023

    Article  CAS  Google Scholar 

  44. Sultan A, Ahmad S, Mohammad F (2017) Synthesis, characterization and electrical properties of polypyrrole/zirconia nanocomposite and its application as ethene gas sensor. Polym Polym Compos 25:695–704. https://doi.org/10.1177/096739111702500908

    Article  CAS  Google Scholar 

  45. Wang S, Tan Z, Li Y, Sun L, Zhang T (2006) Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta 441:191–194. https://doi.org/10.1016/j.tca.2005.05.020

    Article  CAS  Google Scholar 

  46. Fangqiang F, Zhengbin X, Qingying L, Zhong L, Huanqin C (2013) ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix. Chin J Chem Eng 21:113–120. https://doi.org/10.1016/S1004-9541(13)60448-6

    Article  CAS  Google Scholar 

  47. Nabiyev AA, Olejniczak A, Pawlukojc A, Balasoiu M, Bunoiu M, Maharramov AM, Nuriyev MA, Ismayilova RS, Azhibekov AK, Kabyshev AM, Ivankov OI, Vlase T, Linnik DS, Shukurova AA, YuIvanshin O, Turchenko VA, Kuklin AI (2020) Nano-ZrO2 filled high-density polyethylene composites: structure, thermal properties, and the influence γ-irradiation. Polym Degrad Stab 171:109042. https://doi.org/10.1016/j.polymdegradstab.2019.109042

    Article  CAS  Google Scholar 

  48. Fontainha CCP, Neto ATB, Santos AP, Faria LO (2016) P(VDF–TrFE)/ZrO2 polymer-composites for X-ray shielding. Mater Res 19:426–433. https://doi.org/10.1590/1980-5373-MR-2015-0576

    Article  CAS  Google Scholar 

  49. Ahmad NM, Abdullah J, Yusof NA, Ab Rashid AH, Abd Rahman S, Hasan MR (2016) Amperometric biosensor based on zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds. Biosensors 6:31. https://doi.org/10.3390/bios6030031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramazanov MA, Hajiyeva FV, Magerramov AM, Gasanova UA (2017) Effect of a corona discharge on the morphology and photoluminescence intensity of nanocomposites based on polypropylene (PP) and zirconia (ZrO2) nanoparticles. Surf Eng Appl Electrochem 53:213–217. https://doi.org/10.3103/S1068375517030115

    Article  Google Scholar 

  51. Krishnamoorthy K, Natarajan S, Kim S-J, Kadarkaraithangam J (2011) Enhancement in thermal and tensile properties of ZrO2/poly (vinyl alcohol) nanocomposite film. Mater Express 1:329–335. https://doi.org/10.1166/mex.2011.1036

    Article  CAS  Google Scholar 

  52. de Azevedo Gonçalves Mota RC, da Silva EO, de Menezes LR (2018) Effect of the addition of metal oxide nanoparticles on the physical, chemical and thermal properties of PVA based nanocomposites. Mater Sci Appl 9:473–488. https://doi.org/10.4236/msa.2018.95033

    Article  CAS  Google Scholar 

  53. He X, Wang Z, Wang D, Yang F, Tang R, Wang J-X, Pu Y, Chen J-F (2019) Sub-kilogram-scale synthesis of highly dispersible zirconia nanoparticles for hybrid optical resins. Appl Surf Sci 491:505–516. https://doi.org/10.1016/j.apsusc.2019.06.187

    Article  CAS  Google Scholar 

  54. Xia H, Wang Q (2003) Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polym Sci 87:1811–1817. https://doi.org/10.1002/app.11627

    Article  CAS  Google Scholar 

  55. Mallakpour S, Naghdi M (2018) Polymer/SiO2 nanocomposites: production and applications. Prog Mater Sci 97:409–447. https://doi.org/10.1016/j.pmatsci.2018.04.002

    Article  CAS  Google Scholar 

  56. Dutta B, Kar E, Bose N, Mukherjee S (2018) NiO@ SiO2/PVDF: a flexible polymer nanocomposite for a high performance human body motion-based energy harvester and tactile e-skin mechanosensor. ACS Sustain Chem Eng 6:10505–10516. https://doi.org/10.1021/acssuschemeng.8b01851

    Article  CAS  Google Scholar 

  57. Dong Y, Yan Y, Zhang S, Li J (2014) Wood/polymer nanocomposites prepared by impregnation with furfuryl alcohol and nano-SiO2. BioResources 9:6028–6040. https://doi.org/10.15376/biores.9.4.6028-6040

    Article  Google Scholar 

  58. Wen X (2019) One-pot route to graft long-chain polymer onto silica nanoparticles and its application for high-performance poly (l-lactide) nanocomposites. RSC Adv 9:13908–13915. https://doi.org/10.1039/C9RA01360A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zirak MF, Tabari M (2018) PLA–SiO2 nanocomposite films: morphological and mechanical properties and specific end-use characteristics. Nanomed Res J 3:140–145. https://doi.org/10.22034/nmrj.2018.03.004

    Article  CAS  Google Scholar 

  60. Asghari S, Hatami M, Ahmadipour M (2015) Preparation and investigation of novel PVA/silica nanocomposites with potential application in NLO. Polym Plast Technol Eng 54:192–201. https://doi.org/10.1080/03602559.2014.935424

    Article  CAS  Google Scholar 

  61. Hatami M, Ahmadipour M, Asghari S (2017) Heterocyclic grafting functionalization of silica nanoparticles: fabrication, morphological investigation and application for PVA nanocomposites. J Inorg Organomet Polym 27:1072–1083. https://doi.org/10.1007/s10904-017-0557-1

    Article  CAS  Google Scholar 

  62. Khan MMR, Pal S, Hoque MM, Alam MR, Younus M, Kobayashi H (2019) Simple fabrication of PVA–ZnS composite films with superior photocatalytic performance: enhanced luminescence property, morphology, and thermal stability. ACS Omega 4:6144–6153. https://doi.org/10.1021/acsomega.8b02807

    Article  CAS  Google Scholar 

  63. Peng Z, Kong LX, Li S-D, Spiridonov P (2006) Poly (vinyl alcohol)/silica nanocomposites: morphology and thermal degradation kinetics. J Nanosci Nanotechnol 6:3934–3938. https://doi.org/10.1166/jnn.2006.666

    Article  CAS  PubMed  Google Scholar 

  64. Ching CY, Rahman A, Ching KY, Sukiman NL, Cheng HC (2015) Preparation and characterization of polyvinyl alcohol-based composite reinforced with nanocellulose and nanosilica. BioResources 10:3364–3377. https://doi.org/10.15376/biores.10.2.3364-3377

    Article  CAS  Google Scholar 

  65. Janu VC, Singh R, Singh AK, Kulkarni SG (2010) Chemical synthesis, characterization and thermal analysis of polyaniline/ZnO nanocomposite. AIP Conf Proc 1276:249–259. https://doi.org/10.1063/1.3504306

    Article  CAS  Google Scholar 

  66. Khan M, Shaik MR, Khan ST, Adil SF, Kuniyil M, Khan M, Al-Warthan AA, Siddiqui MRH, Tahir MN (2020) Enhanced antimicrobial activity of biofunctionalized zirconia nanoparticles. ACS Omega 5:1987–1996. https://doi.org/10.1021/acsomega.9b03840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ramesh S, Kim HS, Kim J-H (2018) Cellulose-polyvinyl alcohol–nano-TiO2 hybrid nanocomposite: thermal, optical, and antimicrobial properties against pathogenic bacteria. Polym Plast Technol Eng 57:669–681. https://doi.org/10.1080/03602559.2017.1344851

    Article  CAS  Google Scholar 

  68. Fang Z, Wang Y, Xu D, Tan Y, Liu X (2004) Blue luminescent center in ZnO films deposited on silicon substrates. Opt Mater 26:239–242. https://doi.org/10.1016/j.optmat.2003.11.027

    Article  CAS  Google Scholar 

  69. Khan SB, Khan MI, Nisar J (2022) Microwave assisted green synthesis of pure and Mn-doped ZnO nanocomposites: in Vitro anti-bacterial assay and photodegradation of methylene blue. Front Mater Sci 8:491. https://doi.org/10.3389/fmats.2021.710155

    Article  Google Scholar 

  70. Xia Y, Zhang C, Wang J-X, Wang D, Zeng X-F, Chen J-F (2018) Synthesis of transparent aqueous ZrO2 nanodispersion with a controllable crystalline phase without modification for a high-refractive-index nanocomposite film. Langmuir 34:6806–6813. https://doi.org/10.1021/acs.langmuir.8b00160

    Article  CAS  PubMed  Google Scholar 

  71. Khun K, Ibupoto ZH, AlSalhi MS, Atif M, Ansari AA, Willander M (2013) Fabrication of well-aligned ZnO nanorods using a composite seed layer of ZnO nanoparticles and chitosan polymer. Materials 6:4361–4374. https://doi.org/10.3390/ma6104361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khan M, Ware P, Shimpi N (2021) Synthesis of ZnO nanoparticles using peels of Passiflora foetida and study of its activity as an efficient catalyst for the degradation of hazardous organic dye. SN Appl Sci 3:528. https://doi.org/10.1007/s42452-021-04436-4

    Article  CAS  Google Scholar 

  73. Castañeda L (2020) Study of optical properties of zinc oxide nanostructures thin solid films using spin coating technique: a precursor organic for electronics devices applications. BJSTR 31:23876–23883. https://doi.org/10.26717/BJSTR.2020.31.005041

    Article  Google Scholar 

  74. Kandulna R, Choudhary RB (2018) Concentration-dependent behaviors of ZnO-reinforced PVA–ZnO nanocomposites as electron transport materials for OLED application. Polym Bull 7:3089–3107. https://doi.org/10.1007/s00289-017-2186-9

    Article  CAS  Google Scholar 

  75. Anitha S, Natarajan TS (2015) Electrospun fibrous nanocomposite membrane for UV shielding applications. J Nanosci Nanotechnol 15:9705–9710. https://doi.org/10.1166/jnn.2015.11641

    Article  CAS  PubMed  Google Scholar 

  76. Ambrosio R, Carrillo A, Mota ML, De la Torre K, Torrealba R, Moreno M, Vazquez H, Flores J, Vivaldo I (2018) Polymeric nanocomposites membranes with high permittivity based on PVA–ZnO nanoparticles for potential applications in flexible electronics. Polymers 10:1370. https://doi.org/10.3390/polym10121370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Karthikeyan B, Pandiyarajan T, Mangalaraja RV (2016) Enhanced blue light emission in transparent ZnO: PVA nanocomposite free standing polymer films. Spectrochim Acta Part A Mol Biomol Spectrosc 152:485–490. https://doi.org/10.1016/j.saa.2015.07.053

    Article  CAS  Google Scholar 

  78. Jia PY, Liu XM, Li GZ, Yu M, Fang J, Lin J (2006) Sol–gel synthesis and characterization of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3 + core–shell structured spherical particles. Nanotechnology 17:734. https://doi.org/10.1088/0957-4484/17/3/020

    Article  CAS  Google Scholar 

  79. Tang C-M, Tian Y-H, Hsu S-H (2015) Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: mineralization behavior and characterization. Materials 8:4895–4911. https://doi.org/10.3390/ma8084895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fernandes DM, Hechenleitner AAW, Lima SM, Andrade LHC, Caires ARL, Pineda EAG (2011) Preparation, characterization, and photoluminescence study of PVA/ZnO nanocomposite films. Mater Chem Phys 128:371–376. https://doi.org/10.1016/j.matchemphys.2011.03.002

    Article  CAS  Google Scholar 

  81. Liao J, Qiu J, Wang G, Du R, Tsidaeva N, Wang W (2021) 3D core-shell Fe3O4@ SiO2@ MoS2 composites with enhanced microwave absorption performance. J Colloid Interface Sci 604:537–549. https://doi.org/10.1016/j.jcis.2021.07.032

    Article  CAS  PubMed  Google Scholar 

  82. Bahadur NM, Watanabe S, Furusawa T, Sato M, Kurayama F, Siddiquey IA, Kobayashi Y, Suzuki N (2011) Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids Surf A Physicochem Eng Asp 392:137–144. https://doi.org/10.1016/j.colsurfa.2011.09.046

    Article  CAS  Google Scholar 

  83. Park JC, Gilbert DA, Liu K, Louie AY (2012) Microwave enhanced silica encapsulation of magnetic nanoparticles. J Mater Chem 22:8449. https://doi.org/10.1039/C2JM16595C

    Article  CAS  Google Scholar 

  84. Díaz de Greñu B, de los Reyes R, Costero AM, Amorós P, Ros-Lis JV (2020) Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials 10:1092. https://doi.org/10.3390/nano10061092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. El-Dafrawy SM, Tarek M, Samra S, Hassan SM (2021) Synthesis, photocatalytic and antidiabetic properties of ZnO/PVA nanoparticles. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-90846-8

    Article  CAS  Google Scholar 

  86. Kumar NB, Crasta V, Praveen BM (2014) Advancement in microstructural, optical, and mechanical properties of PVA (Mowiol 10–98) doped by ZnO nanoparticles. Phys Res Int. https://doi.org/10.1155/2014/742378

    Article  Google Scholar 

  87. Nayak SM, Anjum R, Husain J, Dattu H, Afrooze A, Radhika G (2021) PVA-ZnO nanocomposites thin films for sensing devices. Ferroelectrics 577:221–228. https://doi.org/10.1080/00150193.2021.1916365

    Article  CAS  Google Scholar 

  88. Bondioli F, Corradi AB, Ferrari AM, Leonelli C (2008) Synthesis of zirconia nanoparticles in a continuous-flow microwave reactor. Appl Surf Sci 91:3746–3748. https://doi.org/10.1111/j.1551-2916.2008.02666.x

    Article  CAS  Google Scholar 

  89. Barman A, De A, Das M (2020) Stabilization and dispersion of ZnO nanoparticles in PVA matrix. J Inorg Organomet Polym 30:2248–2257. https://doi.org/10.1007/s10904-019-01395-7

    Article  CAS  Google Scholar 

  90. Gong X, Tang CY, Pan L, Hao Z, Tsui CP (2014) Characterization of poly (vinyl alcohol)(PVA)/ZnO nanocomposites prepared by a one-pot method. Compos B Eng 60:144–149. https://doi.org/10.1016/j.compositesb.2013.12.045

    Article  CAS  Google Scholar 

  91. Remiš T, Bělský P, Kovářík T, Kadlec J, Azar MG, Medlín R, Vavruňková V, Deshmukh K, Sadasivuni KK (2021) Study on structure, thermal behavior, and viscoelastic properties of nanodiamond-reinforced poly (vinyl alcohol) nanocomposites. Polymers 13:1426. https://doi.org/10.3390/polym13091426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang C-C (2006) Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH. J Mater Sci Eng B 131:256–262. https://doi.org/10.1016/j.mseb.2006.04.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors sincerely thank Nanotechnology Research Center, SRM University, India, and the sophisticated analytical instrument facility (SAIF) at Indian Institute of Technology Madras (IITM), India, for providing HRSEM-EDX images and XRD patterns for nanoparticles and nanocomposites. We would also like to thank the Director of High Energy Materials Research Laboratory (HEMRL), Pune, for the thermal analysis of various samples. Finally, the authors are grateful to Dr. P. K. Khanna, Head, Department of Applied Chemistry, for valuable discussions and to the Vice Chancellor, Defence Institute of Advance Technology, for the permission to publish this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by SSC. The work was supervised by RS and SGK. The first draft of the manuscript was written by SSC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Suresh G. Kulkarni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Channe, S.S., Singh, R. & Kulkarni, S.G. Effect of metal oxide nanoparticles on thermal behavior of polyvinyl alcohol. Polym. Bull. 81, 3403–3438 (2024). https://doi.org/10.1007/s00289-023-04858-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-04858-7

Keywords

Navigation