Skip to main content
Log in

Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present here an ionophore-based ion-selective optode (ISO) platform to detect potassium and sodium concentrations in serum through flow cytometry. The ion-selective microsensors were based on polyethylene glycol (PEG)-modified polystyrene (PS) microspheres (PEG-PS). Ratiometric response curves were observed using peak channel fluorescence intensities for K+ (10−6 M to 0.1 M) and Na+ (10−4 M to 0.2 M) with sufficient selectivity for clinical diagnosis. Due to the matrix effect, proteins such as albumin and immunoglobulin caused an obvious increase in response for serum sample determination. To solve this problem, 4-arm PEG chains were covalently attached onto the surface of PS microspheres through a two-step reaction, which improved the stability and combated pollution of microspheres. As a preliminary application, potassium and sodium concentrations in human serums were successfully determined by the PEG-PS microsensors through flow cytometry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zdrachek E, Bakker E. From molecular and emulsified ion sensors to membrane electrodes: molecular and mechanistic sensor design. Acc Chem Res. 2019;52(5):1400–8. https://doi.org/10.1021/acs.accounts.9b00056.

    Article  CAS  PubMed  Google Scholar 

  2. Xie X, Bakker E. Determination of effective stability constants of ion-carrier complexes in ion selective nanospheres with charged solvatochromic dyes. Anal Chem. 2015;87(22):11587–91. https://doi.org/10.1021/acs.analchem.5b03526.

    Article  CAS  PubMed  Google Scholar 

  3. Xie X, Gutierrez A, Trofimov V, Szilagyi I, Soldati T, Bakker E. Charged solvatochromic dyes as signal transducers in pH independent fluorescent and colorimetric ion selective nanosensors. Anal Chem. 2015;87(19):9954–9. https://doi.org/10.1021/acs.analchem.5b02566.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, Wang X, Decker V, Meyerhoff ME. Plasticizer-free thin-film sodium-selective optodes inkjet-printed on transparent plastic for sweat analysis. ACS Appl Mater Interfaces. 2020;12(23):25616–24. https://doi.org/10.1021/acsami.0c05379.

    Article  CAS  PubMed  Google Scholar 

  5. Xie X, Szilagyi I, Zhai J, Wang L, Bakker E. Ion-selective optical nanosensors based on solvatochromic dyes of different lipophilicity: from bulk partitioning to interfacial accumulation. ACS Sens. 2016;1(5):516–20. https://doi.org/10.1021/acssensors.6b00006.

    Article  CAS  PubMed  Google Scholar 

  6. Xie X, Zhai J, Jarolimova Z, Bakker E. Determination of pK(a) Values of hydrophobic colorimetric pH sensitive probes in nanospheres. Anal Chem. 2016;88(6):3015–8. https://doi.org/10.1021/acs.analchem.5b04671.

    Article  CAS  PubMed  Google Scholar 

  7. Wang R, Du X, Wu Y, Zhai J, Xie X. Graphene quantum dots integrated in ionophore-based fluorescent nanosensors for Na(+) and K(.). ACS Sens. 2018;3(11):2408–14. https://doi.org/10.1021/acssensors.8b00918.

    Article  CAS  PubMed  Google Scholar 

  8. Ruckh TT, Skipwith CG, Chang W, Senko AW, Bulovic V, Anikeeva PO, Clark HA. Ion-switchable quantum dot forster resonance energy transfer rates in ratiometric potassium sensors. ACS Nano. 2016;10(4):4020–30. https://doi.org/10.1021/acsnano.5b05396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Du X, Wang R, Zhai J, Li X, Xie X. Ionophore-based ion-selective nanosensors from brush block copolymer nanodots. ACS Applied Nano Materials. 2019;3(1):782–8. https://doi.org/10.1021/acsanm.9b02286.

    Article  CAS  Google Scholar 

  10. Baranowska-Korczyc A, Maksymiuk K, Michalska A. Electrospun nanofiber supported optodes: scaling down the receptor layer thickness to nanometers - towards 2D optodes. Analyst. 2019;144(15):4667–76. https://doi.org/10.1039/c9an00756c.

    Article  CAS  PubMed  Google Scholar 

  11. Kisiel A, Maksymiuk K, Michalska A. Capsules as ion-selective optodes – maximizing sensitivity of ion-selective optodes. Sens Actuators, B Chem. 2018;273:1730–4. https://doi.org/10.1016/j.snb.2018.07.054.

    Article  CAS  Google Scholar 

  12. Du X, Yang L, Hu W, Wang R, Zhai J, Xie X. A plasticizer-free miniaturized optical ion sensing platform with ionophores and silicon-based particles. Anal Chem. 2018;90(9):5818–24. https://doi.org/10.1021/acs.analchem.8b00360.

    Article  CAS  PubMed  Google Scholar 

  13. Xie X, Crespo GA, Zhai J, Szilagyi I, Bakker E. Potassium-selective optical microsensors based on surface modified polystyrene microspheres. Chem Commun (Camb). 2014;50(35):4592–5. https://doi.org/10.1039/c4cc01313a.

    Article  CAS  PubMed  Google Scholar 

  14. Du X, Xie X. Ion-Selective optodes: alternative approaches for simplified fabrication and signaling. Sens Actuators, B Chem. 2021;335:129368. https://doi.org/10.1016/j.snb.2020.129368.

    Article  CAS  Google Scholar 

  15. Deng L, Zhai J, Xie X. Chemiluminescent ion sensing platform based on ionophores. Anal Chem. 2019;91(13):8638–43. https://doi.org/10.1021/acs.analchem.9b02113.

    Article  CAS  PubMed  Google Scholar 

  16. Deng L, Zhai J, Du X, Xie X. Ionophore-based ion-selective nanospheres based on monomer-dimer conversion in the near-infrared region. ACS Sens. 2021;6(3):1279–85. https://doi.org/10.1021/acssensors.0c02577.

    Article  CAS  PubMed  Google Scholar 

  17. Strobl M, Walcher A, Mayr T, Klimant I, Borisov SM. Trace ammonia sensors based on fluorescent near-infrared-emitting aza-BODIPY dyes. Anal Chem. 2017;89(5):2859–65. https://doi.org/10.1021/acs.analchem.6b04045.

    Article  CAS  PubMed  Google Scholar 

  18. Ge Y, Zhu J, Zhao W, Qin Y. Ion-selective optodes based on near infrared fluorescent chromoionophores for pH and metal ion measurements. Sens Actuators, B Chem. 2012;166–167:480–4. https://doi.org/10.1016/j.snb.2012.02.090.

    Article  CAS  Google Scholar 

  19. Xie X. Renovating the chromoionophores and detection modes in carrier-based ion-selective optical sensors. Anal Bioanal Chem. 2016;408(11):2717–25. https://doi.org/10.1007/s00216-016-9406-2.

    Article  CAS  PubMed  Google Scholar 

  20. Wu J, Qin Y. Polymeric optodes based on upconverting nanorods for fluorescence measurements of Pb2+ in complex samples. Sens Actuators, B Chem. 2014;192:51–5. https://doi.org/10.1016/j.snb.2013.10.090.

    Article  CAS  Google Scholar 

  21. Xie L, Qin Y, Chen HY. Direct fluorescent measurement of blood potassium with polymeric optical sensors based on upconverting nanomaterials. Anal Chem. 2013;85(5):2617–22. https://doi.org/10.1021/ac303709w.

    Article  CAS  PubMed  Google Scholar 

  22. Shibata H, Hiruta Y, Citterio D. Fully inkjet-printed distance-based paper microfluidic devices for colorimetric calcium determination using ion-selective optodes. Analyst. 2019;144(4):1178–86. https://doi.org/10.1039/c8an02146e.

    Article  CAS  PubMed  Google Scholar 

  23. Soda Y, Citterio D, Bakker E. Equipment-free detection of K(+) on microfluidic paper-based analytical devices based on exhaustive replacement with ionic dye in ion-selective capillary sensors. ACS Sens. 2019;4(3):670–7. https://doi.org/10.1021/acssensors.8b01521.

    Article  CAS  PubMed  Google Scholar 

  24. Gerold CT, Bakker E, Henry CS. Selective distance-based K(+) quantification on paper-based microfluidics. Anal Chem. 2018;90(7):4894–900. https://doi.org/10.1021/acs.analchem.8b00559.

    Article  CAS  PubMed  Google Scholar 

  25. Wang R, Du X, Zhai J, Xie X. Distance and color change based hydrogel sensor for visual quantitative determination of buffer concentrations. ACS Sens. 2019;4(4):1017–22. https://doi.org/10.1021/acssensors.9b00186.

    Article  CAS  PubMed  Google Scholar 

  26. Du X, Zhai J, Zeng D, Chen F, Xie X. Distance-based detection of calcium ions with hydrogels entrapping exhaustive ion-selective nanoparticles. Sens Actuators, B Chem. 2020;319:128300. https://doi.org/10.1016/j.snb.2020.128300.

    Article  CAS  Google Scholar 

  27. Du X, Xie X. Non-equilibrium diffusion controlled ion-selective optical sensor for blood potassium determination. ACS Sens. 2017;2(10):1410–4. https://doi.org/10.1021/acssensors.7b00614.

    Article  CAS  PubMed  Google Scholar 

  28. McKinnon KM. Flow cytometry: an overview. Curr Protoc Immunol. 2018;120:5 1 1-5 1 11. https://doi.org/10.1002/cpim.40.

    Article  PubMed  Google Scholar 

  29. Adan A, Alizada G, Kiraz Y, Baran Y, Nalbant A. Flow cytometry: basic principles and applications. Crit Rev Biotechnol. 2017;37(2):163–76. https://doi.org/10.3109/07388551.2015.1128876.

    Article  CAS  PubMed  Google Scholar 

  30. Bernini R, De Nuccio E, Brescia F, Minardo A, Zeni L, Sarro PM, Palumbo R, Scarfi MR. Development and characterization of an integrated silicon micro flow cytometer. Anal Bioanal Chem. 2006;386(7–8):2257–2257. https://doi.org/10.1007/s00216-006-0933-0.

    Article  CAS  Google Scholar 

  31. Huang PJ, Liu J. Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal Chem. 2010;82(10):4020–6. https://doi.org/10.1021/ac9028505.

    Article  CAS  PubMed  Google Scholar 

  32. Van Nguyen T, Alfaro AC. Applications of flow cytometry in molluscan immunology: current status and trends. Fish Shellfish Immunol. 2019;94:239–48. https://doi.org/10.1016/j.fsi.2019.09.008.

    Article  CAS  PubMed  Google Scholar 

  33. Steen HB. Flow cytometry of bacteria: glimpses from the past with a view to the future. J Microbiol Methods. 2000;42(1):65–74. https://doi.org/10.1016/s0167-7012(00)00177-9.

    Article  CAS  PubMed  Google Scholar 

  34. Yang SY, Lien KY, Huang KJ, Lei HY, Lee GB. Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosens Bioelectron. 2008;24(4):861–8. https://doi.org/10.1016/j.bios.2008.07.019.

    Article  CAS  PubMed  Google Scholar 

  35. Suo Y, Gu Z, Wei X. Advances of in vivo flow cytometry on cancer studies. Cytometry A. 2020;97(1):15–23. https://doi.org/10.1002/cyto.a.23851.

    Article  PubMed  Google Scholar 

  36. Jani IV, Janossy G, Brown DWG, Mandy F. Multiplexed immunoassays by flow cytometry for diagnosis and surveillance of infectious diseases in resource-poor settings. Lancet Infect Dis. 2002;2(4):243–50. https://doi.org/10.1016/s1473-3099(02)00242-6.

    Article  CAS  PubMed  Google Scholar 

  37. Nie D, Wu H, Zheng Q, Guo L, Ye P, Hao Y, Li Y, Fu F, Guo Y. A sensitive and selective DNAzyme-based flow cytometric method for detecting Pb2+ ions. Chem Commun (Camb). 2012;48(8):1150–2. https://doi.org/10.1039/c2cc16635f.

    Article  CAS  PubMed  Google Scholar 

  38. Retter R, Peper S, Bell M, Tsagkatakis I, Bakker E. Flow cytometric ion detection with plasticized poly(vinyl chloride) microspheres containing selective lonophores. Anal Chem. 2002;74(20):5420–5. https://doi.org/10.1021/ac025782o.

    Article  CAS  PubMed  Google Scholar 

  39. Xu C, Wygladacz K, Retter R, Bell M, Bakker E. Multiplexed flow cytometric sensing of blood electrolytes in physiological samples using fluorescent bulk optode microspheres. Anal Chem. 2007;79(24):9505–12. https://doi.org/10.1021/ac7016212.

    Article  CAS  PubMed  Google Scholar 

  40. Lee J, Martic PA, Tan JS. Protein adsorption on pluronic copolymer-coated polystyrene particles. J Colloid Interface Sci. 1989;131(1):252–66. https://doi.org/10.1016/0021-9797(89)90166-5.

    Article  CAS  Google Scholar 

  41. Abdel-Haleem FM, Zahran EM. Miniaturization overcomes macro sample analysis limitations: salicylate-selective polystyrene nanoparticle-modified optical sensor. Talanta. 2019;196:436–41. https://doi.org/10.1016/j.talanta.2018.12.073.

    Article  CAS  PubMed  Google Scholar 

  42. Parida BK, Garrastazu H, Aden JK, Cap AP, McFaul SJ. Silica microspheres are superior to polystyrene for microvesicle analysis by flow cytometry. Thromb Res. 2015;135(5):1000–6. https://doi.org/10.1016/j.thromres.2015.02.011.

    Article  CAS  PubMed  Google Scholar 

  43. Suni MA, Picker LJ, Maino VC. Detection of antigen-specific T cell cytokine expression in whole blood by flow cytometry. J Immunol Methods. 1998;212(1):89–98. https://doi.org/10.1016/s0022-1759(98)00004-0.

    Article  CAS  PubMed  Google Scholar 

  44. Gorbet MB, Sefton MV. Leukocyte activation and leukocyte procoagulant activities after blood contact with polystyrene and polyethylene glycol–immobilized polystyrene beads. J Lab Clin Med. 2001;137(5):345–55. https://doi.org/10.1067/mlc.2001.114677.

    Article  CAS  PubMed  Google Scholar 

  45. Rudolph J, Volkl M, Jerome V, Scheibel T, Freitag R. Noxic effects of polystyrene microparticles on murine macrophages and epithelial cells. Sci Rep. 2021;11(1):15702. https://doi.org/10.1038/s41598-021-95073-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discovery Today. 2005;10(21):1451–8. https://doi.org/10.1016/s1359-6446(05)03575-0.

    Article  CAS  PubMed  Google Scholar 

  47. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond). 2011;6(4):715–28. https://doi.org/10.2217/nnm.11.19.

    Article  CAS  PubMed  Google Scholar 

  48. Chen BM, Cheng TL, Roffler SR. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano. 2021;15(9):14022–48. https://doi.org/10.1021/acsnano.1c05922.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Q, Zhai J, Li J, Wang Y, Xie X. Exploring ratiometric endolysosomal pH nanosensors with hydrophobic indicators responding at the nanoscale interface and multiple fluorescence resonance energy transfers. Nano Res. 2021;15(4):3471–8. https://doi.org/10.1007/s12274-021-3870-5.

    Article  CAS  Google Scholar 

  50. Culkin F, Cox RA. Sodium, potassium, magnesium, calcium and strontium in sea water. Deep-Sea Res Oceanogr Abstr. 1966;13(5):789–804. https://doi.org/10.1016/0011-7471(76)90905-0.

    Article  CAS  Google Scholar 

  51. Hughes-Austin JM, Rifkin DE, Beben T, Katz R, Sarnak MJ, Deo R, Hoofnagle AN, Homma S, Siscovick DS, Sotoodehnia N, Psaty BM, de Boer IH, Kestenbaum B, Shlipak MG, Ix JH. The relation of serum potassium concentration with cardiovascular events and mortality in community-living individuals. Clin J Am Soc Nephrol. 2017;12(2):245–52. https://doi.org/10.2215/CJN.06290616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leeman M, Choi J, Hansson S, Storm MU, Nilsson L. Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4). Anal Bioanal Chem. 2018;410(20):4867–73. https://doi.org/10.1007/s00216-018-1127-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China (21874063) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojiang Xie.

Ethics declarations

Ethics approval

Serum was with informed consent of the volunteers from the Department of Clinic Medical Center, Dazhou Central Hospital, China. All samples were conformed to the Helsinki Declaration and approved by the Ethics Committee of Dazhou Central Hospital and Southern University of Science and Technology.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry 2023 with guest editors Zhi-Yuan Gu, Beatriz Jurado-Sánchez, Thomas H. Linz, Leandro Wang Hantao, Nongnoot Wongkaew, and Peng Wu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 787 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Wang, R., Zhai, J. et al. Surface PEGylation of ionophore-based microspheres enables determination of serum sodium and potassium ion concentration under flow cytometry. Anal Bioanal Chem 415, 4233–4243 (2023). https://doi.org/10.1007/s00216-022-04301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04301-2

Keywords

Navigation